903 resultados para STIMULI-RESPONSIVE POLYMERS
Resumo:
The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.
Resumo:
The synthesis of methacrylate esters of 4-cyanophenyl-(4-(ω-hydroxyalkyloxy)) cinnamates, with spacer lengths of 2 and 6 methylene units and the synthesis of the corresponding acrylate ester with a spacer of 2 methylene units are described. The methacrylate monomers were polymerized by free radical polymerization, both as homopolymers and as copolymers with the analogous benzoate monomer of spacer length 6. The acrylate ester could not be polymerized successfully under the same reaction conditions. Polymers were characterized by NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermo-optic observations. Of the monomers prepared, only the cinnamate with a hexamethylene spacer shows a mesophase, seen on supercooling of the melt. All of the polymers prepared were liquid crystalline, with smectic behavior predominating in the polymethacrylates with the longer spacer group. A narrow nematic region is seen just below the clearing temperature with a range of 3–9°C, nematic character is increased in the copolymer series with the degree of incorporation of the cinnamate monomer with the spacer group of length 2.
Resumo:
A series of chain liquid crystalline copolymers of 4-cyanophenyl 4′-(6-methacryloyloxyhexyloxy)benzoate and 2-methacryloyloxyethyl β-(1-naphthyl)-propenoate were prepared by free radical polymerization. The corresponding polyacrylates could not be prepared in the same way and an alternative method was used for their preparation involving the synthesis of copolymers of the mesogenic monomer and 2-hydroxyethyl acrylate followed by treatment of the resulting polymers with β-(1-naphthyl)propenoyl chloride. The materials are of interest as photoactive liquid crystalline polymers. The effect of introducing a bulky nonmesogenic group into a liquid crystalline copolymer generally lowers the clearing temperature and raises Tg but also gives rise to contrasting phase behaviour in these two series of polymers. Polymethacrylates which show mesomorphism have sharp transitions and continue to exhibit a highly ordered smectic phase over the bulk of their liquid crystal range. Polyacrylates, on the other hand, exhibit a weakening and broadening-out of their thermal transitions consistent with a lowering of order. These results emphasize the effect of the polymer backbone on phase behaviour.
Resumo:
Research on the cortical sources of nociceptive laser-evoked brain potentials (LEPs) began almost two decades ago (Tarkka and Treede, 1993). Whereas there is a large consensus on the sources of the late part of the LEP waveform (N2 and P2 waves), the relative contribution of the primary somatosensory cortex (S1) to the early part of the LEP waveform (N1 wave) is still debated. To address this issue we recorded LEPs elicited by the stimulation of four limbs in a large population (n=35). Early LEP generators were estimated both at single-subject and group level, using three different approaches: distributed source analysis, dipolar source modeling, and probabilistic independent component analysis (ICA). We show that the scalp distribution of the earliest LEP response to hand stimulation was maximal over the central-parietal electrodes contralateral to the stimulated side, while that of the earliest LEP response to foot stimulation was maximal over the central-parietal midline electrodes. Crucially, all three approaches indicated hand and foot S1 areas as generators of the earliest LEP response. Altogether, these findings indicate that the earliest part of the scalp response elicited by a selective nociceptive stimulus is largely explained by activity in the contralateral S1, with negligible contribution from the secondary somatosensory cortex (S2).
Resumo:
The homologous series of side chain liquid crystal polymers, the poly[x-(4-methoxyazobenzene- 40-oxy)alkyl methacrylate]s, has been prepared in which the length of the flexible alkyl spacer has been varied from 3 to 11 methylene units. All the polymers exhibit liquid crystalline behaviour. The propyl and butyl members show exclusively nematic behaviour. The pentyl, hexyl, octyl and decyl members show a nematic and a smectic A phase while the heptyl, nonyl and undecyl homologues exhibit only a smectic A phase. The smectic A phase has been studied using X-ray diffraction and assigned as a smectic A1 phase in which the side chains are fully overlapped and the backbones are confined to lie between the smectic layers. For the nonyl member an incommensurate smectic phase is observed. The dependence of the transition temperatures on the length of the flexible spacer is understood in terms of the average shapes of the side chains.
Resumo:
Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including activating transcription factor 3 (Atf3), Egr1 and Ptgs2 are rapidly and transiently upregulated by endothelin-1 in cardiomyocytes. Atf3 regulates expression of downstream genes and is implicated in negative feedback regulation of other immediate early genes. To identify Atf3-regulated genes, we knocked down Atf3 expression in cardiomyocytes exposed to endothelin-1 and used microarrays to interrogate the transcriptomic effects. Of upregulated mRNAs, expression of 23 (including Egr1, Ptgs2) was enhanced and expression of 25 was inhibited by Atf3 knockdown. Using quantitative PCR, we determined that knockdown of Atf3 had little effect on upregulation of Egr1 mRNA over 30 min, but abolished the subsequent decline, causing sustained Egr1 mRNA expression and enhanced protein expression. This resulted from direct binding of Atf3 to the Egr1 promoter. Mathematical modelling established that Atf3 can suffice to suppress Egr1 expression. Given the widespread co-regulation of Atf3 with Egr1, we suggest that the Atf3-Egr1 negative feedback loop is of general significance. Loss of Atf3 caused abnormal cardiomyocyte growth, presumably resulting from dysregulation of target genes. Our data therefore identify Atf3 as a nexus in cardiomyocyte hypertrophy required to facilitate the full and proper growth response.
Resumo:
Wernicke’s aphasia is a condition which results in severely disrupted language comprehension following a lesion to the left temporo-parietal region. A phonological analysis deficit has traditionally been held to be at the root of the comprehension impairment in WA, a view consistent with current functional neuroimaging which finds areas in the superior temporal cortex responsive to phonological stimuli. However behavioural evidence to support the link between a phonological analysis deficit and auditory comprehension has not been yet shown. This study extends seminal work by Blumstein et al. (1977) to investigate the relationship between acoustic-phonological perception, measured through phonological discrimination, and auditory comprehension in a case series of Wernicke’s aphasia participants. A novel adaptive phonological discrimination task was used to obtain reliable thresholds of the phonological perceptual distance required between nonwords before they could be discriminated. Wernicke’s aphasia participants showed significantly elevated thresholds compared to age and hearing matched control participants. Acoustic-phonological thresholds correlated strongly with auditory comprehension abilities in Wernicke’s aphasia. In contrast, nonverbal semantic skills showed no relationship with auditory comprehension. The results are evaluated in the context of recent neurobiological models of language and suggest that impaired acoustic-phonological perception underlies the comprehension impairment in Wernicke’s aphasia and favour models of language which propose a leftward asymmetry in phonological analysis.
Resumo:
Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.
Resumo:
AIMS: The aim of this study was to evaluate the impact of the administration of microencapsulated Lactobacillus plantarum CRL 1815 with two combinations of microbially derived polysaccharides, xanthan : gellan gum (1%:0·75%) and jamilan : gellan gum (1%:1%), on the rat faecal microbiota. METHODS AND RESULTS: A 10-day feeding study was performed for each polymer combination in groups of 16 rats fed either with placebo capsules, free or encapsulated Lact. plantarum or water. The composition of the faecal microbiota was analysed by fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Degradation of placebo capsules was detected, with increased levels of polysaccharide-degrading bacteria. Xanthan : gellan gum capsules were shown to reduce the Bifidobacterium population and increase the Clostridium histolyticum group levels, but not jamilan : gellan gum capsules. Only after administration of jamilan : gellan gum-probiotic capsules was detected a significant increase in Lactobacillus-Enterococcus group levels compared to controls (capsules and probiotic) as well as two bands were identified as Lact. plantarum in two profiles of ileum samples. CONCLUSIONS: Exopolysaccharides constitute an interesting approach for colon-targeted delivery of probiotics, where jamilan : gellan gum capsules present better biocompatibility and promising results as a probiotic carrier. SIGNIFICANCE AND IMPACT OF STUDY: This study introduces and highlights the importance of biological compatibility in the encapsulating material election, as they can modulate the gut microbiota by themselves, and the use of bacterial exopolysaccharides as a powerful source of new targeted-delivery coating material.
Resumo:
In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe ( I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: alpha-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while beta-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated beta-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.
Resumo:
A set of backbone modified peptides of general formula Boc-Xx-m-ABA-Yy-OMe where m-ABA is meta-aminobenzoic acid and Xx and Yy are natural amino acids such as Phe, Gly, Pro, Leu, Ile, Tyr and Trp etc., are found to self-assemble into soft nanovesicular structures in methanol-water solution (9:1 by v/v). At higher concentration the peptides generate larger vesicles which are formed through fusion of smaller vesicles. The formation of vesicles has been facilitated through the participation of various noncovalent interactions such as aromatic pi-stacking, hydrogen bonding and hydrophobic interactions. Model study indicates that the pi-stacking induced self-assembly, mediated by m-ABA is essential for well structured vesicles formation. The presence of conformationally rigid m-ABA in the backbone of the peptides also helps to form vesicular structures by restricting the conformational entropy. The vesicular structures get disrupted in presence of various salts such as KCl, CaCl(2), N(n-Bu)(4)Br and (NH(4))(2)SO(4) in methanol-water solution. Fluorescence microscopy and UV studies reveal that the soft nanovesicles encapsulate organic dye molecules such as Rhodamine B and Acridine Orange which could be released through salts induced disruption of vesicles.
Resumo:
X-ray Rheology is an experimental technique which uses time-ressolved x-ray scattering as probe of the molecular level structural reorganisation which accompanies flow. It provides quantitative information on the direction alignment and on the level of global orientation. This information is very helpful in interpreting the classic rheological data on liquid crystal polymers. In this research we use data obtained from a cellulose derivate which exhibits a thermotropic liquid crystal phase. We show how increased shear rates lead to a rapid rise in the global orientation and we related this to therories of flow in liquid crystal polymers from the literature. We show that the relaxation time is independent of the prior shear rate.