954 resultados para STAGE-REGULATED GENE
Resumo:
Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.
Resumo:
After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.
Resumo:
The recently sequenced genome of the parasitic bacterium Mycoplasma genitalium contains only 468 identified protein-coding genes that have been dubbed a minimal gene complement [Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., et al. (1995) Science 270, 397-403]. Although the M. genitalium gene complement is indeed the smallest among known cellular life forms, there is no evidence that it is the minimal self-sufficient gene set. To derive such a set, we compared the 468 predicted M. genitalium protein sequences with the 1703 protein sequences encoded by the other completely sequenced small bacterial genome, that of Haemophilus influenzae. M. genitalium and H. influenzae belong to two ancient bacterial lineages, i.e., Gram-positive and Gram-negative bacteria, respectively. Therefore, the genes that are conserved in these two bacteria are almost certainly essential for cellular function. It is this category of genes that is most likely to approximate the minimal gene set. We found that 240 M. genitalium genes have orthologs among the genes of H. influenzae. This collection of genes falls short of comprising the minimal set as some enzymes responsible for intermediate steps in essential pathways are missing. The apparent reason for this is the phenomenon that we call nonorthologous gene displacement when the same function is fulfilled by nonorthologous proteins in two organisms. We identified 22 nonorthologous displacements and supplemented the set of orthologs with the respective M. genitalium genes. After examining the resulting list of 262 genes for possible functional redundancy and for the presence of apparently parasite-specific genes, 6 genes were removed. We suggest that the remaining 256 genes are close to the minimal gene set that is necessary and sufficient to sustain the existence of a modern-type cell. Most of the proteins encoded by the genes from the minimal set have eukaryotic or archaeal homologs but seven key proteins of DNA replication do not. We speculate that the last common ancestor of the three primary kingdoms had an RNA genome. Possibilities are explored to further reduce the minimal set to model a primitive cell that might have existed at a very early stage of life evolution.
Resumo:
Two zygotic genes, twist and snail, are indispensable for the correct establishment of the mesoderm primordium in the early Drosophila embryo. They are also needed for morphogenesis and differentiation of the mesoderm. Both genes code for transcription factors with different, albeit complementary, functions. Therefore, to understand the early development of the mesoderm, it will be necessary to identify and study the genes regulated by twist and snail. We have searched for downstream genes using a subtractive cDNA library enriched in sequences expressed in the mesoderm. We have isolated sequences that correspond to 13 novel early mesoderm genes. These novel genes show a variety of expression patterns and also differ in their dependence on twist and snail functions. This indicates that the regulation of early gene activity in the mesoderm is more complex than previously thought.
Resumo:
Early atherosclerotic lesions develop in a topographical pattern that strongly suggests involvement of hemodynamic forces in their pathogenesis. We hypothesized that certain endothelial genes, which exhibit differential responsiveness to distinct fluid mechanical stimuli, may participate in the atherogenic process by modulating, on a local level within the arterial wall, the effects of systemic risk factors. A differential display strategy using cultured human endothelial cells has identified two genes, manganese superoxide dismutase and cyclooxygenase-2, that exhibit selective and sustained up-regulation by steady laminar shear stress (LSS). Turbulent shear stress, a nonlaminar fluid mechanical stimulus, does not induce these genes. The endothelial form of nitric oxide synthase also demonstrates a similar LSS-selective pattern of induction. Thus, three genes with potential atheroprotective (antioxidant, antithrombotic, and antiadhesive) activities manifest a differential response to distinct fluid mechanical stimuli, providing a possible mechanistic link between endothelial gene expression and early events in atherogenesis. The activities of these and other LSS-responsive genes may have important implications for the pathogenesis and prevention of atherosclerosis.
Resumo:
Peroxisome proliferators induce stearoyl-CoA desaturase activity (EC 1.14.99.5) in liver [Kawashima, Y., Hanioka, N., Matsumura, M. & Kozuka, H. (1983) Biochim. Biophys. Acta 752, 259-264]. We analyzed the changes in stearoyl-CoA desaturase 1 (SCD1) mRNA to further define the molecular mechanism for the induction of stearoyl-CoA desaturase by peroxisome proliferators. SCD1 mRNA was analyzed from the livers of BALB/c mice that had been fed diets supplemented with clofibrate or gemfibrozil. Clofibrate was found to induce liver SCD1 mRNA levels 3-fold within 6 hr to a maximum of 22-fold in 30 hr. Gemfibrozil administration resulted in a similar induction pattern. This induction is primarily due to an increase in transcription of the SCD1 gene, as shown by nuclear run-on transcription assays and DNA deletion analysis of transfected SCD1-chloramphenicol acetyltransferase fusion genes. The cis-linked response element for peroxisome proliferator-activated receptor (PPAR) was localized to an AGGTCA consensus sequence between base pairs -664 to -642 of the SCD1 promoter. Clofibrate-mediated induction of SCD1 mRNA was shown to be independent of polyunsaturated fatty acids, with peroxisome proliferators and arachidonic acid having opposite effects on SCD1 mRNA levels. Additionally, the activation of SCD1 mRNA by clofibrate was inhibited 77% by cycloheximide administration. Levels of liver beta-actin and albumin mRNAs were unchanged by these dietary manipulations. Our data show that hepatic SCD1 gene expression is regulated by PPARs and suggest that peroxisome proliferators and poly-unsaturated fatty acids act through distinct mechanisms.
Resumo:
Developmentally regulated genes in Drosophila, which are conserved through evolution, are potential candidates for key functions in biological processes such as cell cycle, programmed cell death, and cancer. We report cloning and characterization of the human homologue of the Drosophila seven in absentia gene (HUMSIAH), which codes for a 282 amino acids putative zinc finger protein. HUMSIAH is localized on human chromosome 16q12-q13. This gene is activated during the physiological program of cell death in the intestinal epithelium. Moreover, human cancer-derived cells selected for suppression of their tumorigenic phenotype exhibit constitutively elevated levels of HUMSIAH mRNA. A similar pattern of expression is also displayed by the p21waf1. These results suggest that mammalian seven in absentia gene, which is a target for activation by p53, may play a role in apoptosis and tumor suppression.
Resumo:
Proteasomes are the multi-subunit protease thought to play a key role in the generation of peptides presented by major histocompatibility complex (MHC) class I molecules. When cells are stimulated with interferon gamma, two MHC-encoded subunits, low molecular mass polypeptide (LMP) 2 and LMP7, and the MECL1 subunit encoded outside the MHC are incorporated into the proteasomal complex, presumably by displacing the housekeeping subunits designated Y, X, and Z, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. Here we show that the mouse gene encoding the Z subunit (Psmb7) maps to the paracentromeric region of chromosome 2. Inspection of the mouse loci adjacent to the Psmb7 locus provides evidence that the paracentromeric region of chromosome 2 and the MHC region on chromosome 17 most likely arose as a result of a duplication that took place at an early stage of vertebrate evolution. The traces of this duplication are also evident in the homologous human chromosome regions (6p21.3 and 9q33-q34). These observations have implications in understanding the genomic organization of the present-day MHC and offer insights into the origin of the MHC.
Resumo:
Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.
Resumo:
Homeobox genes encode a large family of homeodomain proteins that play a key role in the pattern formation of animal embryos. By analogy, homeobox genes in plants are thought to mediate important processes in their embryogenesis, but there is very little evidence to support this notion. Here we described the temporal and spatial expression patterns of a rice homeobox gene, OSH1, during rice embryogenesis. In situ hybridization analysis revealed that in the wild-type embryo, OSH1 was first expressed at the globular stage, much earlier than organogenesis started, in a ventral region where shoot apical meristem and epiblast would later develop. This localized expression of OSH1 indicates that the cellular differentiation has already occurred at this stage. At later stages after organogenesis had initiated, OSH1 expression was observed in shoot apical meristem [except in the L1 (tunica) layer], epiblast, radicle, and their intervening tissues in descending strength of expression level with embryonic maturation. We also performed in situ hybridization analysis with a rice organless embryo mutant, orl1, that develops no embryonic organs. In the orl1 embryo, the expression pattern of OSH1 was the same as that in the wild-type embryo in spite of the lack of embryonic organs. This shows that OSH1 is not directly associated with organ differentiation, but may be related to a regulatory process before or independent of the organ determination. The results described here strongly suggest that, like animal homeobox genes, OSH1 plays an important role in regionalization of cell identity during early embryogenesis.
Resumo:
Regulation of gene expression by zinc is well established, especially through the metal response elements of the metallothionein genes; however, most other aspects of the functions of zinc in gene expression remain unknown. We have looked for intestinal mRNAs that are regulated by dietary zinc status. Using the reverse transcriptase-PCR method of mRNA differential display, we compared intestinal mRNA from rats that were maintained for 18 days in one of three dietary groups: zinc-deficient, zinc-adequate, and pair-fed zinc-adequate. At the end of this period, total RNA was prepared from the intestine and analyzed by mRNA differential display. Under these conditions, only differentially displayed cDNA bands that varied in the zinc-deficient group, relative to the zinc-adequate groups, were selected. Utilizing two anchored oligo-dT3' PCR primers and a total of 27 arbitrary decamers as 5' PCR primers, our results yielded 47 differentially displayed cDNA bands from intestinal RNA. Thirty were increased in zinc deficiency, and 17 were decreased. Nineteen bands were subcloned and sequenced. Eleven of these were detectable on Northern blots, of which four were confirmed as regulated. Three of these have homology to known genes: cholecystokinin, uroguanylin, and ubiquinone oxidoreductase. The fourth is a novel sequence as it has no significant homology in GenBank. The remainder of those cloned included novel sequences, as well as matches to reported expressed sequence tags, and functionally identified genes. Further characterization of the regulated sequences identified here will show whether they are primary or secondary effects of zinc deficiency.
Resumo:
The formation of ventral mesoderm has been traditionally viewed as a result of a lack of dorsal signaling and therefore assumed to be a default state of mesodermal development. The discovery that bone morphogenetic protein 4 (BMP4) can induce ventral mesoderm led to the suggestion that the induction of the ventral mesoderm requires a different signaling pathway than the induction of the dorsal mesoderm. However, the individual components of this pathway remained largely unknown. Here we report the identification of a novel Xenopus homeobox gene PV.1 (posterior-ventral 1) that is capable of mediating induction of ventral mesoderm. This gene is activated in blastula stage Xenopus embryos, its expression peaks during gastrulation and declines rapidly after neurulation is complete. PV.1 is expressed in the ventral marginal zone of blastulae and later in the posterior ventral area of gastrulae and neurulae. PV.1 is inducible in uncommited ectoderm by the ventralizing growth factor BMP4 and counteracts the dorsalizing effects of the dominant negative BMP4 receptor. Overexpression of PV.1 yields ventralized tadpoles and rescues embryos partially dorsalized by LiCl treatment. In animal caps, PV.1 ventralizes induction by activin and inhibits expression of dorsal specific genes. All of these effects mimic those previously reported for BMP4. These observations suggest that PV.1 is a critical component in the formation of ventral mesoderm and possibly mediates the effects of BMP4.
Resumo:
Stage specific activator protein (SSAP) is a member of a newly discovered class of transcription factors that contain motifs more commonly found in RNA-binding proteins. Previously, we have shown that SSAP specifically binds to its recognition sequence in both the double strand and the single strand form and that this DNA-binding activity is localized to the N-terminal RNA recognition motif domain. Three copies of this recognition sequence constitute an enhancer element that is directly responsible for directing the transcriptional activation of the sea urchin late histone H1 gene at the midblastula stage of embryogenesis. Here we show that the remainder of the SSAP polypeptide constitutes an extremely potent bipartite transcription activation domain that can function in a variety of mammalian cell lines. This activity is as much as 3 to 5 times stronger than VP16 at activating transcription and requires a large stretch of amino acids that contain glutamine-glycine rich and serine-threonine-basic amino acid rich regions. We present evidence that SSAP's activation domain shares targets that are also necessary for activation by E1a and VP16. Finally, SSAP's activation domain is found to participate in specific interactions in vitro with the basal transcription factors TATA-binding protein, TFIIB, TFIIF74, and dTAF(II) 110.
Resumo:
We describe a transgenic mouse line carrying the cre transgene under the control of the adenovirus EIIa promoter that targets expression of the Cre recombinase to the early mouse embryo. To assess the ability of this recombinase to excise loxP-flanked DNA sequences at early stages of development, we bred EIIa-cre transgenic mice to two different mouse lines carrying loxP-flanked target sequences: (i) a strain with a single gene-targeted neomycin resistance gene flanked by 1oxP sites and (ii) a transgenic line carrying multiple transgene copies with internal loxP sites. Mating either of these loxP-carrying mouse lines to EIIa-cre mice resulted in first generation progeny in which the loxP-flanked sequences had been efficiently deleted from all tissues tested, including the germ cells. Interbreeding of these first generation progeny resulted in efficient germ-line transmission of the deletion to subsequent generations. These results demonstrate a method by which loxP-flanked DNA sequences can be efficiently deleted in the early mouse embryo. Potential applications of this approach are discussed, including reduction of multicopy transgene loci to produce single-copy transgenic lines and introduction of a variety of subtle mutations into the line.
Resumo:
Expression of the epsilon-subunit gene of the acetylcholine receptor (AChR) by myonuclei located at the neuromuscular junction is precisely regulated during development. A key role in this regulation is played by the synaptic portion of the basal lamina, a structure that is also known to contain agrin, a component responsible for the formation of postsynaptic specializations. We tested whether agrin has a function in synaptic AChR gene expression. Synaptic basal lamina from native adult muscle and recombinant agrin bound to various substrates induced in cultured rat myotubes AChR clusters that were colocalized with epsilon-subunit mRNA. Estimation of transcript levels by Northern hybridization analysis of total RNA showed a significant increase when myotubes were grown on substrate impregnated with agrin, but were unchanged when agrin was applied in the medium. The effect was independent of the receptor aggregating activity of the agrin isoform used, and agrin acted, at least in part, at the level of epsilon-subunit gene transcription. These findings are consistent with a role of agrin in the regulation of AChR subunit gene expression at the neuromuscular junction, which would depend on its binding to the synaptic basal lamina.