993 resultados para SPHERES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spherical silica nanoparticles were prepared using a basic amino acid catalysis route and the kinetics of the particles growth was investigated by small angle X-ray scattering (SAXS). L-arginine was used in the polar aqueous phase as the basic catalyst whereas the tetraethylorthosilicate (TEOS) was dissolved in the cyclohexane oil phase as the silicate monomer source. The SAXS measurements were taken in the aqueous phase at different reaction times. A high degree of monodispersity was clearly evidenced for the spherical nanoparticles as a result of the pronounced high-order oscillations observed in the SAXS curves. The SAXS data show that the particles number density remains unchanged since both the particle size as well as the volume fraction gradually increase. This process was discussed based on a reaction-controlled addition of monomer species at the surface of the growing particles. Consequently, the monodispersed spherical nanoparticles radius can as such be finely tuned from 7 to 12 nm by varying the reaction time. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indium-tin oxide nanowires were deposited by excimer laser ablation onto catalyst-free oxidized silicon substrates at a low temperature of 500 degrees C in a nitrogen atmosphere. The nanowires have branches with spheres at the tips, indicating a vapor-liquid-solid (VLS) growth. The deposition time and pressure have a strong influence on the areal density and length of the nanowires. At the earlier stages of growth, lower pressures promote a larger number of nucleation centers. With the increase in deposition time, both the number and length of the wires increase up to an areal density of about 70 wires/mu m(2). After this point all the material arriving at the substrate is used for lengthening the existing wires and their branches. The nanowires present the single-crystalline cubic bixbyite structure of indium oxide, oriented in the [100] direction. These structures have potential applications in electrical and optical nanoscale devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With suitable thermal treatments, a nearly stoichiometric cordierite glass (2 MgO.2 Al2O3. 5 SiO2) shows a variety of crystal morphologies on the external surfaces: lozenges, regular and elongated hexagons, spherical and square shaped particles. We initially identified these morphologies through optical and scanning electron microscopy techniques. Their structural features were distinguished by x-ray diffraction patterns, infrared and Roman microprobe spectra. We concluded that there are close structural similarities for: lozenges and glass matrix; regular and elongated hexagons; spherical and square particles. The ordering degree increases in the following sequence: glass matrix, lozenges, hexagons, squares and spheres. The lozenge crystals are known as X-phase. The hexagons belong to the μ-cordierite (high quartz solid solution) metastable phase and the squares and spheres to the α-cordierite stable phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of the hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes. © SISSA/ISAS 2003.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we show the expressions of the gravitational potential of homogeneous bodies with non-spherical three-dimensional shapes in order to study the trajectories around these bodies. The potentials of a prolate and an oblate ellipsoids with different values of semi-major axis are presented. Their results are validated with a test using a spherical body in order to guarantee the approximation of any body as a polyhedral model of the body. With these expressions we study trajectories of a point of mass around the three-dimensional bodies and the results indicated that there is a group of orbits around those bodies and the polyhedral form of the object does work very well. Copyright IAF/IAA. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography