981 resultados para SOIL MICROBIAL COMMUNITY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community gardening in cities is increasing, driven by social interaction and food security. City soils are sinks for heavy metals; including neurotoxic lead (Pb). Exposure routes are primarily through inhalation/ingestion of soil, or second by ingestion of plants that have accumulated Pb. This research evaluates soil at three Liberty City, Florida sites estimating risk of Pb exposure through primary and secondary pathways. Soil cores were collected from Liberty City, and red Malabar spinach (Basella rubra) was grown in Pb soil treatments in a greenhouse. Total soil Pb levels and plant tissues were measured after acid digestion, by ICP-OES. In Liberty City, two sites had hotspots with areas of elevated soil Pb levels. Plants grown on Pb contaminated soil all accumulated statistically significant Pb concentrations. Therefore, there is a potential risk of Pb exposure to residents in Liberty City by exposure in hotspot sites through both the primary and secondary pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i) charcoal feeding on manure composition, and (ii) charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.). To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration); second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001) from 45.2% (0% AC) to 60.2% (9% AC) with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001) from 0% AC (N: 2.5%, P: 1.5%, K: 0.8%) to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%). Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landfill leachates carry nutrients, especially N and K, which can be recycled in cropping systems. We applied doses of landfill leachate (0 [Control], 32.7, 65.4, 98.1, and 130.8 m3 ha-1 ) three times in 2008 and three times in 2009 on a clay Rhodic Kandiudult soil. In 2009, black oat (Avena strigosa L.) and corn (Zea mays L.) were cropped in succession and assessed for concentration of nutrients in leaves and for shoot biomass and grain yield, respectively. As a positive control, an additional treatment with urea (120 kg ha-1 of N) was studied in corn. Soil was sampled at four depths (down to 60 cm) in three sampling dates to assess chemical and biochemical properties. Concentration of nutrients in leaves, oat biomass (8530?23,240 kg ha-1), and corn grain yield (4703-8807 kg ha-1 ) increased with increasing doses of leachate. There was a transient increase in the concentration of nitrate in soil (3-30 mg kg-1), increasing the risk of N losses by leaching at doses above 120 kg ha-1 N, as revealed by an estimated N balance in the cropping system. Sodium and K in soil also increased with increasing doses of leachate but decreased as rainfall occurred. The activity of dehydrogenase decreased about 30% from the control to the highest dose of leachate and urea, suggesting an inhibitory effect of mineral N on microbial metabolism. Landfill leachate was promising as a source of N and K for crop productivity and caused minor or transient effects on soil properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of cover crop straw and early application of total N at sowing may provide significant changes in the microbial population, reflecting on the N dynamics in the soil and in upland rice plants. This study aimed at determining the effect of the early application of nitrogen doses as mineral N and microbial biomass carbon in the soil, as well as in the activity of nitrate reductase, and grain yield of upland rice plants cultivated under notillage system (NTS). A randomized blocks design, in a split-plot scheme, with four replications, was used. The treatments consisted of N doses (0 kg ha-1, 40 kg ha-1, 80 kg ha-1 and 120 kg ha-1) and the presence or absence of U. brizantha cover straw. Maintaining the straw on the soil surface reduces the ammonium levels and increases the microbial biomass carbon content of the soil. The application of increasing doses of N in the soil provides increases in the levels of nitrate and ammonium in the soil up to 28 days after emergence. The activity of the nitrate reductase enzyme in the plants increases and the contents of ammonium and nitrate in the soil decrease with the crop development. The number of panicles and grain yield of upland rice increase with the increase of the nitrogen fertilization, but decrease in the presence of U. brizantha straw. Thus, it is recommend the use of early N fertilization in upland rice crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The study of labile carbon fractions (LCF) provides an understanding of the behavior of soil organic matter (SOM) under different soil management systems and cover crops. The aim of this study was to assess the effect of different soil management systems with respect to tillage, cover crop and phosphate fertilization on the amount of the LCF of SOM. Treatments consisted of conventional tillage (CT) and no-tillage (NT) with millet as the cover crop and a no-tillage system with velvet bean at two phosphorus dosages. Soil samples were collected and analyzed for organic carbon (OC), C oxidizable by KMnO4 (C-KMnO4), particulate OC (POC), microbial biomass carbon and light SOM in the 0.0-0.05, 0.05-0.10 and 0.10-0.20 m soil layers. The Carbon Management Index (CMI) was calculated to evaluate the impacts of soil management treatments on the quality of the SOM. The different LCFs are sensitive to different soil management systems, and there are significant correlations between them. C-KMnO4 is considered the best indicator of OC carbon lability. In the soil surface layers, the CT reduced the carbon content in all of the labile fractions of the SOM. The use of phosphorus led to the accumulation of OC and carbon in the different soil fractions regardless of the tillage system or cover crop. The application of phosphate fertilizer improved the ability of the NTsystem to promote soil quality, as assessed by the CMI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to investigate the impact of vegetation burning on the content and chemical composition of soil organic matter (SOM) along a profile of a sandy Acrisol in Southwestern Amazon, Brazil, within 3 years after experiment beginning(YAB).The study was performed in Rio Branco, Acre State, and the forest burning was performed under controlled conditions. Samples from 6 depth(0-100cm depth)were collected under burned forest (BF) and primary forest (PF) at 1 YAB and 3 YAB. Besides Cand N contents, humic substances and biomarkers were determined. Under PF, the C content decreased with depth from 12 to 2 g kg-1.C/N ratio ranged from 7.6 at the surface to values around 3 at 1 m depth, indicating a predominance of microbial products. Humin fraction was not detected in the whole profile. Burning of vegetation promoted an increase of C and of humic acids only at 0-5 cm. The n-alkane distribution showed a shift towards smaller chains in the 0-5 cm of BF, indicating main contribution of microbial products. Also PAH?s of high molecular weight were detected in this site. Vegetation burning imparts alterations on the SOM composition, but these tend to disappear within 3 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil carries out a wide range of functions and it is important study the effects of land use on soil quality in order to provide most sustainable practices. Three fields trial have been considered to assess soil quality and functionality after human alteration, and to determine the power of soil enzymatic activities, biochemical indexes and mathematical model in the evaluation of soil status. The first field was characterized by conventional and organic management in which were tested also tillage effects. The second was characterized by conventional, organic and agro-ecological management. Finally, the third was a beech forest where was tested the effects of N deposition on soil organic carbon sequestration. Results highlight that both enzyme activities and biochemical indexes could be valid parameters for soil quality evaluation. Conventional management and plowing negatively affected soil quality and functionality with intensive tillage that lead to the downturn of microbial biomass and activity. Both organic and agro-ecological management revealed to be good practices for the maintenance of soil functionality with better microbial activity and metabolic efficiency. This positively affected also soil organic carbon content. At the eutrophic forest, enzyme activities and biochemical indexes positively respond to the treatments but one year of experimentation resulted to be not enough to observe variation in soil organic carbon content. Mathematical models and biochemical indicators resulted to be valid tools for assess soil quality, nonetheless it would be better including the microbial component in the mathematical model and consider more than one index if the aim of the work is to evaluate the overall soil quality and functionality. Concluding, the forest site is the richest one in terms of organic carbon, microbial biomass and activity while, the organic and the agro-ecological management seem to be the more sustainable but without taking in consideration the yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial Fuel Cells (MFC) technology finds space as a promising technology as a green alternative power-generating device, by the possibility to convert organic matter directly into electricity by microbially catalysed reactions, especially for the potential of the simultaneous treatment of wastewaters. Despite the studies that were carried out over the decades, MFCs still provide insufficient power and current densities in order to be commercially attractive in the energy market. Scientific community today pursues two main strategies in order to increase the overall performance output of the MFC. The first is to support the cells with an external supercapacitor (SC), which is able to accept and deliver charge much faster than normal capacitors, thanks to the use of an electrostatic double-layer capacitance, in combination with pseudocapacitance. The second is to implement directly the SC into the MFC, by using carbon electrodes with high surface area, similar to the SC. Both strategies are eventually supported by the use of charge boosters, respect to the application of the MFC. Galvanostatic measures for the MFC and SCs are performed at different currents, alone and by integration of both devices. The SCs used have a capacitance respectively of 1F, 3F and 6F. Subsequently, a stack of MFCs is assembled and paired to a 3F SC, in order to power an ambient diffuser, able to spray at intervals with a can and a controller. In conclusion, the use of a SC in parallel to the MFCs increases the overall performance of the system. The SC remove the discharge current limit of the MFC and increases the energy and power delivered by the system, allowing it to power for a certain time the ambient diffuser successfully. The key factor highlighted by the final experiment was the insufficient charging time of the SC, resulting finally in a voltage that is inadequate to power the device. Further studies are therefore necessary to improve the performance of the MFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revascularization outcome depends on microbial elimination because apical repair will not happen in the presence of infected tissues. This study evaluated the microbial composition of traumatized immature teeth and assessed their reduction during different stages of the revascularization procedures performed with 2 intracanal medicaments. Fifteen patients (7-17 years old) with immature teeth were submitted to the revascularization procedures; they were divided into 2 groups according to the intracanal medicament used: TAP group (n = 7), medicated with a triple antibiotic paste, and CHP group (n = 8), dressed with calcium hydroxide + 2% chlorhexidine gel. Samples were taken before any treatment (S1), after irrigation with 6% NaOCl (S2), after irrigation with 2% chlorhexidine (S3), after intracanal dressing (S4), and after 17% EDTA irrigation (S5). Cultivable bacteria recovered from the 5 stages were counted and identified by means of polymerase chain reaction assay (16S rRNA). Both groups had colony-forming unit counts significantly reduced after S2 (P < .05); however, no significant difference was found between the irrigants (S2 and S3, P = .99). No difference in bacteria counts was found between the intracanal medicaments used (P = .95). The most prevalent bacteria detected were Actinomyces naeslundii (66.67%), followed by Porphyromonas endodontalis, Parvimonas micra, and Fusobacterium nucleatum, which were detected in 33.34% of the root canals. An average of 2.13 species per canal was found, and no statistical correlation was observed between bacterial species and clinical/radiographic features. The microbial profile of infected immature teeth is similar to that of primarily infected permanent teeth. The greatest bacterial reduction was promoted by the irrigation solutions. The revascularization protocols that used the tested intracanal medicaments were efficient in reducing viable bacteria in necrotic immature teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodotorula glutinis CCT 2182, Rhodosporidium toruloides CCT 0783, Rhodotorula minuta CCT 1751 and Lipomyces starkeyi DSM 70296 were evaluated for the conversion of sugars from Brazilian molasses into single-cell oil (SCO) feedstock for biodiesel. Pulsed fed-batch fermentations were performed in 1.65 l working volume bioreactors. The maximum specific growth rate (µmax), lipid productivity (Pr) and cellular lipid content were, respectively, 0.23 h(-1), 0.41 g l(-1) h(-1), and 41% for Rsp. toruloides; 0.20 h(-1), 0.27 g l(-1) h(-1), and 36% for Rta. glutinis; 0.115 h(-1), 0.135 g l(-1) h(-1), and 27 % for Rta. minuta; and 0.11 h(-1), 0.13 g l(-1) h(-1), and 32% for L. starkeyi. Based on their microbial lipid productivity, content, and profile, Rsp. toruloides and Rta. glutinis are promising candidates for biodiesel production from Brazilian molasses. All the oils from the yeasts were similar to the composition of plant oils (rapeseed and soybean) and could be used as raw material for biofuels, as well as in food and nutraceutical products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By comparing the SEED and Pfam functional profiles of metagenomes of two Brazilian coral species with 29 datasets that are publicly available, we were able to identify some functions, such as protein secretion systems, that are overrepresented in the metagenomes of corals and may play a role in the establishment and maintenance of bacteria-coral associations. However, only a small percentage of the reads of these metagenomes could be annotated by these reference databases, which may lead to a strong bias in the comparative studies. For this reason, we have searched for identical sequences (99% of nucleotide identity) among these metagenomes in order to perform a reference-independent comparative analysis, and we were able to identify groups of microbial communities that may be under similar selective pressures. The identification of sequences shared among the metagenomes was found to be even better for the identification of groups of communities with similar niche requirements than the traditional analysis of functional profiles. This approach is not only helpful for the investigation of similarities between microbial communities with high proportion of unknown reads, but also enables an indirect overview of gene exchange between communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV-vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 - a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4μg/ml, which warrants further detailed investigations concerning toxicity.