910 resultados para SOFT PALATE
Resumo:
OBJECTIVE: To compare and evaluate longitudinally the dental arch relationships from 4.5 to 13.5 years of age with the Bauru-BCLP Yardstick in a large sample of patients with bilateral cleft lip and palate (BCLP). DESIGN: Retrospective longitudinal intercenter outcome study. PATIENTS: Dental casts of 204 consecutive patients with complete BCLP were evaluated at 6, 9, and 12 years of age. All models were identified only by random identification numbers. SETTING: Three cleft palate centers with different treatment protocols. MAIN OUTCOME MEASURES: Dental arch relationships were categorized with the Bauru-BCLP yardstick. Increments for each interval (from 6 to 9 years, 6 to 12 years, and 9 to 12 years) were analyzed by logistic and linear regression models. RESULTS: There were no significant differences in outcome measures between the centers at age 12 or at age 9. At age 6, center B showed significantly better results (p=.027), but this difference diminished as the yardstick score for this group increased over time (linear regression analysis), the difference with the reference category (center C, boys) for the intervals 6 to 12 and 9 to 12 years being 10.4% (p=.041) and 12.9% (p=.009), respectively. CONCLUSIONS: Despite different treatment protocols, dental arch relationships in the three centers were comparable in final scores at age 9 and 12 years. Delaying hard palate closure and employing infant orthopedics did not appear to be advantageous in the long run. Premaxillary osteotomy employed in center B appeared to be associated with less favorable development of the dental arch relationship between 9 and 12 years.
Resumo:
PURPOSE: To evaluate the ratio of soft tissue to hard tissue in bilateral sagittal split setback osteotomy with rigid internal fixation or wire fixation. MATERIALS AND METHODS: A literature search was performed using PubMed, Medline, CINAHL, Web of Science, the Cochrane Library, and Google Scholar Beta. From the original 766 articles identified, 8 articles were included. Two articles were prospective and 6 retrospective. The follow-up period ranged from 1 year to 12.7 years for rigid internal fixation. Two articles on wire fixation were found to be appropriate for inclusion. RESULTS: The differences between short- and long-term ratios of the lower lip to lower incisors for bilateral sagittal split setback osteotomy with rigid internal fixation or wire fixation were quite small. The ratio was 1:1 in the long term and by trend slightly lower in the short term. No distinction was seen between the short- and long-term ratios for mentolabial fold. The ratio was found to be 1:1 for the mentolabial fold to point B. In the short term, the ratio of the soft tissue pogonion to the pogonion showed a 1:1 ratio, with a trend to be lower in the long term. The upper lip showed mainly protrusion, but the amount was highly variable. CONCLUSIONS: This systematic review shows that evidence-based conclusions on soft tissue changes are difficult to draw. This is mostly because of inherent problems of retrospective studies, inferior study designs, and the lack of standardized outcome measurements. Well-designed prospective studies with sufficient samples and excluding additional surgery, ie, genioplasty or maxillary surgery, are needed.
Resumo:
PURPOSE: The purpose of the present systematic review was to evaluate the soft tissue/hard tissue ratio in bilateral sagittal split advancement osteotomy (BSSO) with rigid internal fixation (RIF) or wire fixation (WF). MATERIALS AND METHODS: The databases PubMed, Medline, CINAHL, Web of Science, Cochrane Library, and Google Scholar Beta were searched. From the original 711 articles identified, 12 were finally included. Only 3 studies were prospective and 9 were retrospective. The postoperative follow-up ranged from 3 months to 12.7 years for RIF and 6 months to 5 years for WF. RESULTS: The short- and long-term ratios for the lower lip to lower incisor for BSSO with RIF or WF were 50%. No difference between the short- and long-term ratios for the mentolabial-fold to point B and soft tissue pogonion to pogonion could be observed. It was a 1:1 ratio. One exception was seen for the long-term results of the soft tissue pogonion to pogonion in BSSO with RIF; they tended to be greater than a 1:1 ratio. The upper lip mainly showed retrusion but with high variability. CONCLUSIONS: Despite a large number of studies on the short- and long-term effects of mandibular advancement by BSSO, the results of the present systematic review have shown that evidence-based conclusions on soft tissue changes are still unknown. This is mostly because of the inherent problems of retrospective studies, inferior study designs, and the lack of standardized outcome measures. Well-designed prospective studies with sufficient sample sizes that have excluded patients undergoing additional surgery (ie, genioplasty or maxillary surgery) are needed.
Resumo:
Most of the lymphomas arising in the oral cavity are of B-cell origin. Among these, diffuse large B-cell lymphomas are the most common. Diffuse large B-cell lymphomas may exhibit more than one chromosomal rearrangement and are then referred to as 'double-hit' or 'triple-hit' lymphomas.
Resumo:
We propose a computationally efficient and biomechanically relevant soft-tissue simulation method for cranio-maxillofacial (CMF) surgery. A template-based facial muscle reconstruction was introduced to minimize the efforts on preparing a patient-specific model. A transversely isotropic mass-tensor model (MTM) was adopted to realize the effect of directional property of facial muscles in reasonable computation time. Additionally, sliding contact around teeth and mucosa was considered for more realistic simulation. Retrospective validation study with postoperative scan of a real patient showed that there were considerable improvements in simulation accuracy by incorporating template-based facial muscle anatomy and sliding contact.
Resumo:
Objective: To compare the soft and hard tissue healing and remodeling around tissue-level implants with different neck configurations after at least 1 year of functional loading. Material and methods: Eighteen patients with multiple missing teeth in the posterior area received two implants inserted in the same sextant. One test (T) implant with a 1.8 mm turned neck and one control (C) implant with a 2.8 mm turned neck were randomly assigned. All implants were placed transmucosally to the same sink depth of approximately 1.8 mm. Peri-apical radiographs were obtained using the paralleling technique and digitized. Two investigators blinded to the implant type-evaluated soft and hard tissue conditions at baseline, 6 months and 1 year after loading. Results: The mean crestal bone levels and soft tissue parameters were not significantly different between T and C implants at all time points. However, T implants displayed significantly less crestal bone loss than C implants after 1 year. Moreover, a frequency analysis revealed a higher percentage (50%) of T implants with crestal bone levels 1–2 mm below the implant shoulder compared with C implants (5.6%) 1 year after loading. Conclusion: Implants with a reduced height turned neck of 1.8 mm may, indeed, lower the crestal bone resorption and hence, may maintain higher crestal bone levels than do implants with a 2.8 mm turned neck, when sunk to the same depth. Moreover, several factors other than the vertical positioning of the moderately rough SLA surface may influence crestal bone levels after 1 year of function.
Resumo:
X-ray computed tomography (CT) using phase contrast can provide images with greatly enhanced soft-tissue contrast in comparison to conventional attenuation-based CT. We report on the first scan of a human specimen recorded with a phase-contrast CT system based on an x-ray grating interferometer and a conventional x-ray tube source. Feasibility and potential applications of preclinical and clinical phase-contrast CT are discussed.
Resumo:
To evaluate maxillary dental arch dimensions in pre-school children with a complete unilateral cleft lip and palate (CUCLP) after early alveolar bone grafting.
Resumo:
Computerized soft-tissue simulation can provide unprecedented means for predicting facial outlook pre-operatively. Surgeons can virtually perform several surgical plans to have the best surgical results for their patients while considering corresponding soft-tissue outcome. It could be used as an interactive communication tool with their patients as well. There has been comprehensive amount of works for simulating soft-tissue for cranio-maxillofacial surgery. Although some of them have been realized as commercial products, none of them has been fully integrated into clinical practice due to the lack of accuracy and excessive amount of processing time. In this chapter, state-of-the-art and general workflow in facial soft-tissue simulation will be presented, along with an example of patient-specific facial soft-tissue simulation method.
Resumo:
A high (18)F-fluorodeoxyglucose (FDG) uptake by positron emission tomography/computed tomography (PET/CT) imaging in sarcomas of adults has been reported. The current study aimed at defining the degree of (18)F-FDG uptake of pediatric sarcomas. This retrospective study included 29 patients (23 males, 6 females; mean age 14 ± 5 years) with soft tissue (n = 9) or bone (n = 20) sarcomas. Twenty-two patients (76%) underwent (18)F-FDG PET/CT and 7 (24%) had dedicated (18)F-FDG PET studies. Tumor (18)F-FDG uptake was quantified by standard uptake value (SUV)(max) and tumor-to-liver ratios (SUV ratios; tumor SUV(max)/liver SUV(mean)). Tumor SUV(max) and SUV ratios were correlated with tumor Ki-67 expression. SUV(max) ranged from 1.4 to 24 g/mL (median 2.5 g/mL) in soft tissue sarcomas and 1.6 to 20.4 g/mL (median 6.9 g/mL) in bone sarcomas (P = .03), and from 1.6 to 9.2 g/mL (median 3.9 g/mL) and 3.5 to 20.4 g/mL (median 12 g/mL) in Ewing sarcoma and osteosarcoma, respectively (P = .009). Tumor SUV ratios ranged from 0.8 to 8.7 (median 1.9) in soft tissue sarcomas and 1.4 to 8.9 (median 3.8) in bone sarcomas (P = .08). Ewing sarcoma had a significantly lower tumor SUV ratio than osteosarcoma (P = .01). Ki-67 expression correlated significantly with the (18)F-FDG uptake in bone but not in soft tissue sarcomas. All sarcomas were visualized by (18)F-FDG PET/CT imaging. A higher (18)F-FDG uptake was observed in osteosarcoma than in Ewing and soft tissue sarcomas. The results of this study suggest that the degree of tumor (18)F-FDG uptake is sufficient to allow for monitoring of therapeutic responses in pediatric sarcomas.
Resumo:
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.