969 resultados para SCANNING
Resumo:
Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly (vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (-OH) and hydrophobic (Si-(CH(3))(2)) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of similar to 14 wt % without a loss in the ability to swell less polar solvents. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 158-166, 2010
Resumo:
The structural determinants of myotoxicity of bothropstoxin-I (BthTX-I), a Lys49 phospholipase A(2) from Bothrops jararacussu venom, were studied by measuring the resting membrane potential in the mouse phrenic nerve-diaphragm preparation. This method proved to be around 100-fold more sensitive than the creatine kinase release assay, and was used to evaluate a total of 31 site-directed BthTX-I alanine scanning mutants. Mutants that reduced the resting membrane potential were located in a surface patch defined by residues in the C-terminal loop (residues 115-129), positions 37-39 in the membrane interfacial recognition surface (Y46 and K54), and residue K93. These results expand the known structural determinants of the biological activity as evaluated by previous creatine kinase release experiments. Furthermore, a strong correlation is observed between the structural determinants of sarcolemma depolarization and calcium-independent disruption of liposome membranes, suggesting that a common mechanism of action underlies the permeabilization of the biological and model membranes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A new solution route for the obtainment of highly pure luminescent rare-earth orthophosphates in hydrothermal conditions was developed. By starting from soluble precursors (lanthanide tripolyphosphato complexes. i.e. with P(3)O(10)(5) as a complexing agent and as in orthophosphate source) and by applying surfactants in a water/toluene medium, the precipitations are confined to reverse micelle structures, thus yielding nanosized and homogeneous orthophosphates The method was employed to obtain lanthanide-activated lanthanum phosphates, which can be applied as red (LaPO(4):Eu(3+)), green (LaPO(4):Ce(3+), Tb(3+)) and blue (LaPO(4):Tm(3+)) phosphors The produced materials were analyzed by powder X-ray diffractometry, scanning electron microscopy, infrared spectroscopy and luminescence spectroscopy (emission, excitation, lifetimes and chromaticity coordinates) (C) 2009 Elsevier B V All rights reserved
Resumo:
Vanadyl phosphate and its hybrid compounds have proven to undergo electrochemical intercalation and de-intercalation of lithium ions, which enables its use as cathode material for Li ion rechargeable batteries. In this context, vanadyl phosphate di-hydrate/polyaniline derivatives hybrid films were synthesized via the exfoliation and reconstruction approach in order to evaluate their potential use as cathode in ion lithium batteries. X-ray diffraction patterns indicate that the lamellar structure of the inorganic matrix is maintained, consistent with the topotactic process. In the scanning electron micrographs, hybrid films exhibit rough surface consisting of warped and cracked crystallites, quite different from vanadyl phosphate di-hydrate square platelets crystallites. Electrochemical evaluation using cyclic voltammetry and charge-discharge galvanostatic techniques shows small differences between the charge and the discharge curves, indicating an irreversibility of the hybrid systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
Lead (Pb) contamination in the black paper that recovers intraoral films (BKP) has been investigated. BKP samples were collected from the Radiology Clinics of the Dental School of Ribeirao Preto, University of Sao Paulo, Brazil. For sake of comparison, four different methods were used. The results revealed the presence of high lead levels, well above the maximum limit allowed by the legislation. Pb contamination levels achieved after the following treatments: paper digestion in nitric acid, microwave treatment, DIN38414-54 method and TCLP method were 997 mu g g(-1), 189 mu g g(-1), 20.8 mu g g(-1), and 54.0 mu g g(-1), respectively. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma mass spectrometry (ICP-MS) were employed for lead determination according to the protocols of the applied methods. Lead contamination in used BKP was confirmed by scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDS). All the SEM imaging was carried out in the secondary electron mode (SE) and backscattered-electron mode (QBSD) following punctual X-ray fluorescence spectra. Soil contamination derived from this product revealed the urgent need of addressing this problem. These elevated Pb levels, show that a preliminary treatment of BKP is mandatory before it is disposed into the common trash. The high lead content of this material makes its direct dumping into the environment unwise. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which permeabilizes biological and artificial membranes by a mechanism independent of lipid hydrolysis. This mechanism has been investigated by studying the interaction of nine single tryptophan BthTx-I mutants with negatively charged phospholipid membranes. Changes in the solvent exposure of the tryptophan in each mutant were evaluated comparing the rate of chemical modification (k(mod)) by bromosuccinamide with the maximum intrinsic tryptophan fluorescence emission wavelength (lambda(max)) in buffer and in the presence of 10% DMPA/90% DPPC liposomes. No changes in lambda(max). were observed, whereas k(mod) values for tryptophans at positions 7, 10, 31 and 125 were significantly reduced in the presence of lipids, suggesting that bound phospholipid decreases solvent accessibility at these positions. Since the half-lives of the fluorescence and chemical modification effects differ by at least six orders of magnitude, these results suggest that the bound phospholipid may interact with multiple locations on the protein surface over micro- to millisecond timescales. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Jacobsen catalyst, Mn(salen), was immobilized in chitosan membrane. The obtained Mn(salen)-Chit was characterized by thermogravimetric analysis (TC), differential thermal analysis (DTA), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), degree of N-acetylation by (1)H NMR, and UV-vis spectroscopy. The UV-vis absorption spectrum of the encapsulated catalyst displayed the typical bands of the Jacobsen catalyst, and the FT-IR presented an absorption band characteristic of the imines present in the Jacobsen catalyst. The chitosan membranes were available, in a biphasic system, as a catalytic barrier between two different phases: an organic substrate phase (cyclooctene or styrene) and an aqueous solution of either m-CPBA, t-BuOOH or H(2)O(2), and dismissing the need for phase transfer agents and leading to better product yields compared with the catalyst in homogeneous medium. This new catalyst did not leach from the support and was reused many times, leading to high turnover frequencies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
Research documents related to the morphology and function of style branches and stigmatic surface of Asteraceae are still rather few, and the literature reports are thus controversial. We report in the present study that the stigmatic surfaces of two non-related species of Asteraceae (Lessingianthus grandiflorus and Lucilia lycopodioides) have features of semidry stigmas. Sporodermis of both species was also analyzed so that we could understand how the stigmatic surface works during pollen deposition and rehydration. Stylar branches and pollen grains (sporodermis) were studied using scanning and transmission electron microscopy (SEM and TEM) and histochemistry techniques. The inner and marginal bands of stylar branches in these species display intermediary features between the dry and wet types of stigma: the cuticle characterizes the dry stigma and cells with secretory activity characterize the wet stigma; these showed differences from what has been described to the Asteraceae family, where stigmatic surface of species from several tribes is considered dry. Pollen grains are medium-size to large with exine ornamentation (echinate and echinolophate) and abundant secretion which latter characterizes pollenkitt. We can assume that two processes might help pollen grain hydration on stigmatic surface in Lessingianthus grandiflorus and Lucilia lycopodioides: (1) the presence of pollenkitt, as observed in the secretory content inside exine cavities and around pollen grains; and (2) the secretory activity of stigmatic surface cells, whose secretion accumulates among intercellular and subcuticular spaces and leads to cuticle disruption during the floral receptive phase. Our results suggest that ultrastructural and histochemical studies should be considered when describing stigmatic surface and that the ""semidry"" feature within Asteraceae should be investigated still more in detail, so that the taxonomic or adaptation value of this trait in the family can be verified. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
The total deposition of environmental tobacco smoke (ETS), diesel and petrol smoke in the respiratory tract of 14 non-smokers between the ages of 20 and 30 was determined experimentally. A scanning mobility particle sizer (SMPS) measuring a size range of 0.016-0.626 mu m was used to characterise the inhaled and exhaled aerosol during relaxed nasal breathing over a period of 10 min. The ETS, diesel, and petrol particles had average count median diameter (and geometric standard deviation) of 0.183 mu m (1.7), 0.125 mu m (1.7), and 0.069 mu m (1.7), respectively. The average total number deposition of ETS was 36% (standard deviation 10%), of diesel smoke 30% (standard deviation 9%), and of petrol smoke 41% (standard deviation 8%). The analysis of the deposition patterns as a function of particle size for the three aerosols in each individual showed that there is a significant difference between each aerosol for a majority of individuals (12 out of 14). This is an important result as it indicates that differences persist regardless of inter-subject variability. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This work reports on the synthesis, characterization and applications of the new cerium(III) beta-diketonate Ce(hdacac)(3)(Hhdacac)(3)center dot 2H(2)O (where hdacac and Hhdacac denote, respectively, the hexadecylpentane-2,4-dionate and hexadecylpentane-2,4-dione ligands) as catalyst for the reduction of automotive emissions. Due to its amphiphilic character, this complex can be solubilized in non-polar fuels, thus generating cerium(IV) oxide particles, which efficiently catalyze the oxidation of diesel/biodiesel soot. The synthesized complex was characterized by microanalysis (C, H), thermal analysis, and infrared spectroscopy. Scanning electron microscopy, X-ray diffractometry, and specific surface area measurements attested that the complex can act as a soluble precursor of homogeneous CeO(2) spherical nanoparticles. The efficiency of this compound as catalyst for the reduction of soot emission was evaluated through static studies (comprising carbon black oxidation), which confirmed that increasing concentrations of the complex result in lower carbon black oxidation temperatures and lower activation Gibbs free energies. Dynamic studies, which embraced the combustion of diesel/biodiesel blends containing different amounts of the solubilized complex in a stationary motor, allowed a comparative evaluation of the soot emission through diffuse reflectance spectroscopy. These analyses provided very emphatic evidences of the efficiency of this new cerium complex for the control of soot emission in diesel/biodiesel motors. (c) 2009 Published by Elsevier B.V.
Resumo:
This work reports on the synthesis and characterization of the ligand 3-hexadecylpentane-2,4-drone (Hhdacac) and its Eu(3+) complexes Eu(hdacac)(6) center dot 2H(2)O, Eu(hdacac)(6) center dot phen and Eu(hdacac)(6) center dot tta, where phen and tta denote 1,10-phenanthroline and thenoyltrifluoroacetone, respectively. These new compounds present long carbon chains and their expected miscibility into non-polar ambients is confirmed by the emission spectra of Eu(hdacac)6 center dot tta in hexane. Moreover, the amphiphilic properties of Eu(hdacac)6 complexes allow the obtainment of thin luminescent films by the Langmuir-Blodgett technique. In both cases (solids and films), the typical antenna effect of beta-diketonates is observed. The alluring characteristics of these compounds raise great interest in many fields of Materials Science, like photo- and electro-luminescent materials (mainly thin ""organic"" films), metal catalysts or probes in non-polar solutions, and Langmuir-Blodgett films of several compositions. For the characterization of these products, nuclear magnetic resonance spectroscopy ((1)H NMR), thermogravimetric analysis, elementary analyses (C, H), scanning electron microscopy (energy dispersive X-ray spectroscopy), absorption (UV-vis/FT-IR) and photoluminescence spectroscopies were used. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material`s evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.
Resumo:
We compared the responsiveness of the LGN and the early retinotopic cortical areas to stimulation of the two cone-opponent systems (red - green and blue - yellow) and the achromatic system. This was done at two contrast levels to control for any effect of contrast. MR images were acquired on seven subjects with a 4T Bruker MedSpec scanner. The early visual cortical areas were localised by phase encoded retinotopic mapping with a volumetric analysis (Dumoulin et al, 2003 NeuroImage 18 576 - 587). We initially located the LGN in four subjects by using flickering stimuli in a separate scanning session, but subsequently identified it using the experimental stimuli. Experimental stimuli were sine-wave counterphasing rings (2 Hz, 0.5 cycle deg-1), cardinal for the selective activation of the L/M cone-opponent (RG), S cone-opponent (BY), and achromatic (Ach) systems. A region of interest analysis was performed. When presented at equivalent absolute contrasts (cone contrast = 5% - 6%), the BOLD response of the LGN is strongest to isoluminant red - green stimuli and weakest to blue - yellow stimuli, with the achromatic response falling in between. Area V1, on the other hand, responds best to both chromatic stimuli, with the achromatic response falling below. The key change from the LGN to V1 is a dramatic boost in the relative blue - yellow response, which occurred at both contrast levels used. This greatly enhanced cortical response to blue - yellow relative to the red - green and achromatic responses may be due to an increase in cell number and/or cell response between the LGN and V1. We speculate that the effect might reflect the operation of contrast constancy across colour mechanisms at the cortical level.