861 resultados para SAW transducers
Resumo:
The goal of this research was to determine the density distribution in medium density fiberboard (MDF), manufactured with polyurethane derived from castor oil using, ultrasonic wave technique. The equipment used in this test is Steinkamp BP7 with plan and exponential transducers, both with 45 kHz frequencies, located in several zones on the plate in order to determine wave ultrasonic velocity. The Pinus caribaea and Eucalyptus grandis fiberboard were manufactured in the quality control and products development laboratory of Duratex with 500 mm long, 500 mm large, 8 and 15 mm of thickness. Three MDF for each fiber specimen and thickness were fabricated, totalizing twelve plates tested. The MDF were produced with 5% polyurethane addition, in temperature of 160°C, tension press of 53 bars and addition of moisture content of 12%. For determination of fiberboard density, samples were extracted from the same zones where the wave ultrasonic velocity was determined. In this case, DAX-Ray equipment was used. Statistical analysis shows good agreement with wave ultrasonic velocity and the density profile, validating the application of non-destructive technique in order to determine the density profile of MDF's.
Resumo:
The Marsh Antwren (Stymphalornis acutirostris) is restricted to the lowlands between Antonina Bay, in the coastal plain of the state of Paraná, and Itapocu river, in the northern coastal plain of the state of Santa Catarina (from 0 to c. 5 m a.s.l.). It doesn't occur continuously in this region, being found in eight populations that span over an total area of about 6,060 ha (= area of occupancy; 4,856.67 in Paraná and c. 1,200 in Santa Catarina). Nine habitat types used by the Marsh Antwren were defined, based on vegetation physiognomy, localization, dominancy of botanical species, dominant life-form and history of the region. Five of these are herbaceous (marshes), while four have an upper arboreal stratum and an herbaceous lower stratum with marsh plants. According to the classification criteria of the Brazilian vegetation proposed by the Radambrasil Project, they were classified as Pioneering Formation of Fluvial Influence, Pioneering Formation of Fluvial-marine Influence, and/or Pioneering Formation of Lacustrine Influence. They occur as patches or narrow strips ranging from 0.001 to 203.0 ha in the state of Paraná. They are found mainly in the interior of bays, in the lower courses of rivers that drain into bays, in alluvial plains, and between sand dunes in the coastal plain. Characteristic herbaceous species are cattail (Typha domingensis), bulrush (Scirpus californicus), Crinum salsum, Panicum sp. cf. P. mertensii, saw grass (Cladium mariscus) and Fuirena spp. Hibiscus pernambucensis is the characteristic bush species, and Calophyllum brasiliense, Tabebuia cassinoides, Annona glabra and Laguncularia racemosa are the characteristic arboreal species. The Marsh Antwren lives in herbaceous vegetation, but also uses bushes and branches of small tress. It has low flight capacity and a single flight of more than 25 m was never recorded. Territories of 0.25 ha were estimated in one kind of habitat (tidal marsh) (= 8 individuals per hectare) and of 3.2 ha in another one (saw grass marsh) (= 0.62 individual per hectare). The global population estimate is of about 17,700 mature individuals (13,700 in Paraná and 4,000 in Santa Catarina). The species is really under threat of extinction, mainly because of it's restricted geographical distribution and habitat loss by human activities and biological contamination caused by invasion of exotic grasses (Urochloa arrecta and Brachiaria mutica).
Resumo:
Occlusion is a predisposing factor for Temporomandibular Dysfunctions (TMD) of the joint, whose first sign and/or symptom is usually joint sound. To verify the effect of occlusion on joint sounds, temporomandibular joints (TMJ) were analyzed in 78 asymptomatic individuals with various dental conditions. Electrosonography was used to determine the intensity of the vibration in the temporomandibular joint (TMJ) on opening and closing the mouth. Transducers (piezoelectric accelerometer) were placed on the right and left joints. Results were tabled and analyzed using the Kruskal-Wallis test (a=0.05). It was concluded that TMJ vibration in partly edentulous individuals from Kennedy classes I, II and III is statistically higher than in dentate and fully edentulous subjects.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
This work describes the use of a large aperture PVDF receiver in the measurement of density of liquids and elastic constants of composite materials. The density measurement of several liquids is obtained with the accuracy of less than 0.2% using a conventional NDT emitter transducer and a 70-mm diameter, 52-μm P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants of composite materials is based in the measurement of phase velocity. It is shown that the diffraction can lead to errors around 1% in the velocity measurement when using a pair of ultrasonic transducers (1MHz and 19mm diameter) operating in transmission-reception mode separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz transducers. On the other hand, the dispersion at 10 MHz can result in errors of about 0.5%, measuring the velocity in composite materials. The use of an 80-mm diameter, 52-μm thick PVDF membrane receiver allows measuring the phase velocity without the diffraction effects.
Resumo:
Incluye Bibliografía
Resumo:
This paper presents a new approach for damage detection in structural health monitoring systems exploiting the coherence function between the signals from PZT (Lead Zirconate Titanate) transducers bonded to a host structure. The physical configuration of this new approach is similar to the configuration used in Lamb wave based methods, but the analysis and operation are different. A PZT excited by a signal with a wide frequency range acts as an actuator and others PZTs are used as sensors to receive the signal. The coherences between the signals from the PZT sensors are obtained and the standard deviation for each coherence function is computed. It is demonstrated through experimental results that the standard deviation of the coherence between the signals from the PZTs in healthy and damaged conditions is a very sensitive metric index to detect damage. Tests were carried out on an aluminum plate and the results show that the proposed methodology could be an excellent approach for structural health monitoring (SHM) applications.
Resumo:
This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.
Resumo:
Background: Doppler ultrasonography is a non-invasive real time pulse-wave technique recently used for the transrectal study of the reproductive system hemodynamics in large animals. This technic is based in the Doppler Effect Principle that proposes the change in frequency of a wave for an observer (red blood cells) moving relative to the source of the respective wave (ultrasonic transducer). This method had showed to be effective and useful for the evaluation of the in vivo equine reproductive tract increasing the diagnostic, monitoring, and predictive capabilities of theriogenology in mares. However, an accurate and truthful ultrasonic exam requires the previous knowledge of the Doppler ultrasonography principles. Review: In recent years, the capabilities of ultrasound flow imaging have increased enormously. The current Doppler ultrasound machines offer three methods of evaluation that may be used simultaneously (triplex mode). In B-mode ultrasound, a linear array of transducers simultaneously scans a plane through the tissue that can be viewed as a two-dimensional gray-scale image on screen. This mode is primarily used to identify anatomically a structure for its posterior evaluation using colored ultrasound modes (Color or Spectral modes). Colored ultrasound images of flow, whether Color or Spectral modes, are essentially obtained from measurements of moving red cells. In Color mode, velocity information is presented as a color coded overlay on top of a B-mode image, while Pulsed Wave Doppler provides a measure of the changing velocity throughout the cardiac cycle and the distribution of velocities in the sample volume represented by a spectral graphic. Color images conception varies according to the Doppler Frequency that is the difference between the frequency of received echoes by moving blood red cells and wave frequency transmitted by the transducer. To produce an adequate spectral graphic it is important determine the position and size of the simple gate. Furthermore, blood flow velocity measurement is influence by the intersection angle between ultrasonic pulses and the direction of moving blood-red cells (Doppler angle). Objectively colored ultrasound exam may be done on large arteries of the reproductive tract, as uterine and ovary arteries, or directly on the target tissue (follicle, for example). Mesovarium and mesometrium attachment arteries also can be used for spectral evaluation of the equine reproductive system. Subjectively analysis of the ovarian and uterine vascular perfusion must be done directly on the corpus luteum, follicular wall and uterus (endometrium and myometrium associated), respectively. Power-flow imaging has greater sensitivity to weak blood flow and independent of the Doppler angle, improving the evaluation of vessels with small diameters and slow blood flow. Conclusion: Doppler ultrasonography principles, methods of evaluation and reproductive system anatomy have been described. This knowledge is essential for the competent equipment acquisition and precise collection and analysis of colored ultrasound images. Otherwise, the reporting of inconsistent and not reproducible findings may result in the discredit of Doppler technology ahead of the scientific veterinary community.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
This work describes a hardware/software co-design system development, named IEEE 1451 platform, to be used in process automation. This platform intends to make easier the implementation of IEEE standards 1451.0, 1451.1, 1451.2 and 1451.5. The hardware was built using NIOS II processor resources on Alteras Cyclone II FPGA. The software was done using Java technology and C/C++ for the processors programming. This HW/SW system implements the IEEE 1451 based on a control module and supervisory software for industrial automation. © 2011 Elsevier B.V.
Resumo:
This paper presents a network node embedded based on IEEE 1451 standard developed using structured programming to access the transducers in the WTIM. The NCAP was developed using Nios II processor and uClinux, a embedded operating system developed to features restricted hardware. Both hardware and software have dynamics features and they can be configured based in the application features. Based in this features, the NCAP was developed using the minimum components of hardware and software to that being implemented in remote environment like central point of data request. Many NCAP works are implemented with an object oriented structure. This is different from the surrounding implementations. In this project the NCAP was developed using structured programming. The tests of the NCAP were made using a ZigBee interface between NCAP and WTIM and the system demonstrated in areas of difficult access for long period of time due to need for low power consumption. © 2012 IEEE.