912 resultados para Robust localisation systems
Resumo:
In the scope of this study, ‘performance measurement’ includes the collection and presentation of relevant information that reflects progress in achieving organisational strategic aims and meeting the needs of stakeholders such as merchants, importers, exporters and other clients. Evidence shows that utilising information technology (IT) in customs matters supports import and export practices and ensures that supply chain management flows seamlessly. This paper briefly reviews some practical techniques for measuring performance. Its aim is to recommend a model for measuring the performance of information systems (IS): in this case, the Customs Information System (CIS) used by the Royal Malaysian Customs Department (RMCD).The study evaluates the effectiveness of CIS implementation measures in Malaysia from an IT perspective. A model based on IS theories will be used to assess the impact of CIS. The findings of this study recommend measures for evaluating the performance of CIS and its organisational impacts in Malaysia. It is also hoped that the results of the study will assist other Customs administrations evaluate the performance of their information systems.
Resumo:
Segmentation of novel or dynamic objects in a scene, often referred to as background sub- traction or foreground segmentation, is critical for robust high level computer vision applica- tions such as object tracking, object classifca- tion and recognition. However, automatic real- time segmentation for robotics still poses chal- lenges including global illumination changes, shadows, inter-re ections, colour similarity of foreground to background, and cluttered back- grounds. This paper introduces depth cues provided by structure from motion (SFM) for interactive segmentation to alleviate some of these challenges. In this paper, two prevailing interactive segmentation algorithms are com- pared; Lazysnapping [Li et al., 2004] and Grab- cut [Rother et al., 2004], both based on graph- cut optimisation [Boykov and Jolly, 2001]. The algorithms are extended to include depth cues rather than colour only as in the original pa- pers. Results show interactive segmentation based on colour and depth cues enhances the performance of segmentation with a lower er- ror with respect to ground truth.
Resumo:
In this paper, the performance of voltage-source converter-based shunt and series compensators used for load voltage control in electrical power distribution systems has been analyzed and compared, when a nonlinear load is connected across the load bus. The comparison has been made based on the closed-loop frequency resopnse characteristics of the compensated distribution system. A distribution static compensator (DSTATCOM) as a shunt device and a dynamic voltage restorer (DVR) as a series device are considered in the voltage-control mode for the comparison. The power-quality problems which these compensator address include voltage sags/swells, load voltage harmonic distortions, and unbalancing. The effect of various system parameters on the control performance of the compensator can be studied using the proposed analysis. In particular, the performance of the two compensators are compared with the strong ac supply (stiff source) and weak ac-supply (non-still source) distribution system. The experimental verification of the analytical results derived has been obtained using a laboratory model of the single-phase DSTATCOM and DVR. A generalized converter topology using a cascaded multilevel inverter has been proposed for the medium-voltage distribution system. Simulation studies have been performed in the PSCAD/EMTDC software to verify the results in the three-phase system.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.
Resumo:
This paper investigated the phenomenon of prejudice among ISD project members. We presented a theoretical discussion followed by one qualitative and one quantitative study. In the qualitative study, we interviewed different members of the project teams to understand the different types of prejudice possessed by team members. Results of this interview study led to the development of prejudice scales for IT members and users, which was used in the quantitative study. We surveyed 128 ISD teams and found that prejudice was related task and relationship conflict, satisfaction and willingness to work together in the future. Furthermore, prejudice exerts stronger influences on users than IT members in terms of increasing task and relationship conflicts and decreasing goal commitment.
Resumo:
Gay community media functions as a system with three nodes, in which the flows of information and capital theoretically benefit all parties: the gay community gains a sense of cohesion and citizenship through media; the gay media outlets profit from advertisers’ capital; and advertisers recoup their investments in lucrative ‘pink dollar’ revenue. But if a necessary corollary of all communication systems is error or noise, where—and what—are the errors in this system? In this paper we argue that the ‘error’ in the gay media system is Queerness, and that the gay media system ejects (in a process of Kristevan abjection) these Queer identities in order to function successfully. We examine the ways in which Queer identities are excluded from representation in such media through a discourse and content analysis of The Sydney Star Observer (Australia’s largest gay and lesbian paper). First, we analyse the way Queer bodies are excluded from the discourses that construct and reinforce both the ideal gay male body and the notions of homosexual essence required for that body to be meaningful. We then argue that abject Queerness returns in the SSO’s discourses of public health through the conspicuous absence of the AIDS-inflicted body (which we read as the epitome of the abject Queer), since this absence paradoxically conjures up a trace of that which the system tries to expel. We conclude by arguing that because the ‘Queer error’ is integral to the SSO, gay community media should practise a politics of Queer inclusion rather than exclusion.
Resumo:
Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.
Resumo:
Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show: Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load. There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures. The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases. The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.
Resumo:
In this paper a new approach is proposed for interpreting of regional frequencies in multi machine power systems. The method uses generator aggregation and system reduction based on coherent generators in each area. The reduced system structure is able to be identified and a kalman estimator is designed for the reduced system to estimate the inter-area modes using the synchronized phasor measurement data. The proposed method is tested on a six machine, three area test system and the obtained results show the estimation of inter-area oscillations in the system with a high accuracy.
Resumo:
This paper presents a preliminary crash avoidance framework for heavy equipment control systems. Safe equipment operation is a major concern on construction sites since fatal on-site injuries are an industry-wide problem. The proposed framework has potential for effecting active safety for equipment operation. The framework contains algorithms for spatial modeling, object tracking, and path planning. Beyond generating spatial models in fractions of seconds, these algorithms can successfully track objects in an environment and produce a collision-free 3D motion trajectory for equipment.
Resumo:
Linking real-time schedulability directly to the Quality of Control (QoC), the ultimate goal of a control system, a hierarchical feedback QoC management framework with the Fixed Priority (FP) and the Earliest-Deadline-First (EDF) policies as plug-ins is proposed in this paper for real-time control systems with multiple control tasks. It uses a task decomposition model for continuous QoC evaluation even in overload conditions, and then employs heuristic rules to adjust the period of each of the control tasks for QoC improvement. If the total requested workload exceeds the desired value, global adaptation of control periods is triggered for workload maintenance. A sufficient stability condition is derived for a class of control systems with delay and period switching of the heuristic rules. Examples are given to demonstrate the proposed approach.
Resumo:
The application of variable structure control (VSC) for power systems stabilization is studied in this paper. It is the application, aspects and constraints of VSC which are of particular interest. A variable structure control methodology has been proposed for power systems stabilization. The method is implemented using thyristor controlled series compensators. A three machine power system is stabilized using a switching line control for large disturbances which becomes a sliding control as the disturbance becomes smaller. The results demonstrate the effectiveness of the methodology proposed as an useful tool to suppress the oscillations in power systems.
Resumo:
Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.