953 resultados para Ricostruzione di immagine, imaging a microonde.
Resumo:
The synthesis and direct observation of 1,1-di-tert-butyldiazene (16) at -127°C is described. The absorption spectrum of a red solution of 1,1-diazene 16 reveals a structured absorption band with λ max at 506 run (Me_2O, -125°C). The vibrational spacing in S_1 is about 1200 cm^(-1). The excited state of 16 emits weakly with a single maximum at 715 run observed in the fluorescence spectrum (Me_2O:CD_2Cl_2, -196°C). The proton NMR spectrum of 16 occurs as a singlet at 1.41 ppm. Monitoring this NMR absorption at -94^0 ± 2°C shows that 1,1-diazene 16 decomposes with a first-order rate of 1.8 x 10^(-3) sec(-1) to form isobutane, isobutylene and hexarnethylethane. This rate is 10^8 and 10^(34) times faster than the thermal decomposition of the corresponding cis and trans 1,2-di-tert-butyldiazene isomers. The free energy of activation for decomposition of 1,1-diazene 16 is found to be 12.5 ± 0.2 kcal/mol at -94°C which is much lower than the values of 19.1 and 19.4 kcal/lmole calculated at -94°C for N-(2,2,6,6- tetramethylpiperidyl)nitrene (3) and N-(2,2,5,5- tetrarnethylpyrrolidyl)nitrene (4), respectively. This difference between 16 and the cyclic-1,1-diazenes 3 and 4 can be attributed to a large steric interaction between the tert-butyl groups in 1,1-diazene 16.
In order to investigate the nature of the singlet-triplet gap in 1,1-diazenes, 2,5-di-tert-butyl-N-pyrrolynitrene (22) was generated but was found to be too reactive towards dimerization to be persistent. In the presence of dimethylsulfoxide, however, N-pyrrolynitrene (22) can be trapped as N-(2,5-di-tert-butyl- N'-pyrrolyl)dimethylsulfoxirnine (38). N-(2,5-di-tert-butyl-N'-pyrrolyl)dimethylsulfoximine (38-d^6) exchanges with free dimethylsulfoxide at 50°C in solution, presumably by generation and retrapping of pyrrolynitrene 22.
Resumo:
Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.
Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.
Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.
Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.
Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.
Resumo:
Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented. A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.
Resumo:
In single-particle tracking (SPT), fluorescence video microscopy is used to record the motion images of single particle or single molecule. Here, by using a total-internal-reflection microscope equipped with an argon ion laser and a charge-coupled device (CCD) camera with high-speed and high-sensitivity, video images of single nanobeads in solutions were obtained. From the trajectories, the diffusion coefficient of individual nanobead was determined by the mean square displacements as a function of time. The sizes of nanobeads were calculated by Stokes-Einstein equation, and the results were compared with the actual values.
Resumo:
Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere.
The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths.
Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often result in certain degrees of photo-damages because of the high focal intensity at the scanning point. In order to overcome such an issue, several wide-field optical-sectioning techniques have been proposed and demonstrated, although not without introducing new limitations and compromises such as low signal-to-background ratios and reduced axial resolutions. As a result, single-point-scanning optical-sectioning techniques remain the most widely used instrumentations for volumetric imaging of living biological systems to date.
In order to develop wide-field optical-sectioning techniques that has equivalent optical performance as single-point-scanning ones, this thesis first introduces the mechanisms and limitations of existing wide-field optical-sectioning techniques, and then brings in our innovations that aim to overcome these limitations. We demonstrate, theoretically and experimentally, that our proposed wide-field optical-sectioning techniques can achieve diffraction-limited optical sectioning, low out-of-focus excitation and high-frame-rate imaging in living biological systems. In addition to such imaging capabilities, our proposed techniques can be instrumentally simple and economic, and are straightforward for implementation on conventional wide-field microscopes. These advantages together show the potential of our innovations to be widely used for high-speed, volumetric fluorescence imaging of living biological systems.
Resumo:
X-ray phase imaging with illumination by a partially coherent source with a setup similar to in-line holography is considered. Using the optical transform function, we consider the effects of partial coherence on this x-ray phase imaging for a weak phase object. The optimal contrast and the resolution of phase imaging are analyzed. As the coherence decreases, the imaging contrast and the optimal contrast frequency decrease, and the resolution degrades. It is shown that this contrast-enhanced phase-imaging method can be regarded as a linear bandpass filter and that the bandwidth and the image contrast are changeable. The frequency property of the imaging system can be improved if an incoherent x-ray source with the proper shape is used. (C) 1999 Optical Society of America.
Resumo:
The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressed by an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phase retrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution of the phase retrieval is unstable. The numerical simulation is performed and the result validates that the solution of the phase retrieval is unstable.
Resumo:
The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.
Resumo:
Pseudo-thermal light has been widely used in ghost imaging experiments. In order to understand the differences between the pseudo-thermal source and thermal source, we propose a method to investigate whether a light source has cross spectral purity (CSP), and experimentally measure the cross spectral properties of the pseudo-thermal light source in near-field and far-field zones. Moreover we present a theoretical analysis of the cross spectral influence on ghost imaging. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The relationship between transmission area of an object imaged and the visibility of correlated imaging is investigated in a lensless system. We show that they are not in simple inverse proportion, as usually depicted. The changes of the visibility will be quite different when the transmission area is varied by different manners, which may motivate people to seek a new understanding about the influence factors of the visibility. (C) 2007 Optical Society of America
Resumo:
We study the self-imaging and image-transforming properties of a probe field in a cold atomic medium with electromagnetically induced transparency (EIT). Due to the similarities between the gradient-index medium and the inhomogeneous index distribution of an EIT medium under the conditions of a negative probe detuning and a Gaussian control field, we find based on analytical investigations that there exists a kind of electromagnetically induced self-imaging phenomenon in cold atomic media. Numerical simulations clearly show that electromagnetically induced self-imaging is observable and controllable. (c) 2007 Optical Society of America.
Resumo:
We use coherent-mode representation of partially coherent fields to analyze correlated imaging with classical light sources. This formalism is very useful to study the imaging quality. By decomposing the unknown object as the superposition of different coherent modes, the components corresponding to small eigenvalues cannot be well imaged. The generated images depend crucially on the distribution of the eigenvalues of the coherent-mode representation of the source and the decomposition coefficients of the objects. Three kinds of correlated imaging schemes are analyzed numerically.
Resumo:
Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the similarities and the differences between ghost imaging by third-order correlation and by second-order correlation, and analyze the effect from each correlation part of the third-order correlation function on the imaging process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the second-order correlated one, while the imaging information originates mainly from the correlation of the intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-order correlation.
Resumo:
The spatial longitudinal coherence length (SLCL), which is determined by the size of and the distance from the source, is introduced to investigate the longitudinal resolution of lensless ghost imaging. Its influence is discussed quantitatively by simulation. The discrepancy of position sensitivity between Scareelli et al. [Appl. Phys. Lett. 88, 061106 (2006)] and Basano and Ottonello [Appl. Phys. Lett. 88, 091109 (2006)] is clarified. (C) 2008 Optical Society of America.
Resumo:
Under the circumstance of a Gaussian control field, the cold atomic medium with electromagnetically induced transparency (EIT) turns out to be the special medium with the quadratic index distribution which is controllable online. In our study, the optical system occupies a portion of the EIT medium which acts as an imaging device. With the help of the Collins formula, the analytic expression for the spatial distribution of the probe field in the cold atomic medium is obtained as well as the location of the imaging. The methods for improving the visibility of the imaging are proposed in this paper. Moreover, we also show that the shapes of the images on the output are strongly influenced by the intensity of the control field, which provides a potential optical processing method.