974 resultados para Reverse Transcriptase Polymerase Chain Reaction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was carried out to clarify the real role that was played by the budgerigars (Melopsittacus undulatus) in the epidemiological plan, under the perspective of its being an infection source of the Newcastle Disease Virus (NDV). For this, the study used Specific-Pathogen-Free chicks (SPF) that were housed with budgerigars that were inoculated with a pathogenic strain (velogenic viscerotropic) of NDV (EID5o =10815/0.1 mL) pathogenic to chickens, by the ocular-nasal via. Each group was composed by 10 SPF chicks and 5 budgerigars. After 5 days of the inoculation of the budgerigars with NDV, SPF chicks were put together with each group of budgerigars, so that there was a direct contact between both species. Cloaca) swabs and blood samples were collected in both species (budgerigars and SPF chicks) after 13 and 19 days post-challenge, respectively, for genome viral excretion by Reverse Transcription Polymerase Chain Reaction (RTPCR) and antibody's search by the inhibition of hemmaglutination test (HI). Budgerigars did not demonstrate any clinical signs of Newcastle Disease (ND). They were refractory to the clinical disease with the NDV. However, antibody titres from inhibition of Hemagglutination (HI) test were detected 9 and 21 days after challenge. Therefore, it was demonstrated the state of carrier of NDV in this species. In SPF chicks allocated with infected budgerigars, NDV genome was detected 13 and 19 days after challenge. Thus, the transmission of the pathogenic virus from the budgerigars to SPF chicks that were housed together was evident until 19 days of the experimental infection with this pathogen. This reveals the importance of the budgerigars from the epidemiological point of view as a potential source of infection of the NDV to commercial chickens that could be raised near this species.
Resumo:
The aim of this study was to evaluate the importance of vaccination against Newcastle Disease (ND) in lovebirds (Agapornis roseicollis) and to investigate the state of carrier of the virus (NDV) in this species. There were used 48 lovebirds, distributed at random into 4 experimental groups: GI (Ulster 2C strain), Gil (B1 strain), Gill (LaSota strain) and GIV (non-vaccinated group). At 12 months of age, all groups were challenged with a pathogenic virus (NDV) suspension (ElD50 = 1081510.1 mL) and a group of Specific-Pathogen-Free (SPF) chicks were used as control of the virus. Cloaca) swabs from each bird were collected after 9, 14 and 21 days post-challenge for detection of genome viral excretion by Reverse Transcription Polymerase Chain Reaction RT-PCR. Lovebirds of GI, Gil and Gill did not demonstrate any signs of ND. They were refractory to the clinical disease. In lovebirds from the control group, NDV genome was detected 9 and 21 days after challenge. Therefore it was demonstrated the state of carrier of NDV by lovebirds. In birds from the vaccinated groups, genome viral excretion was not detected by RT-PCR. It was also demonstrated the importance of the vaccination in the suppression of the state of virus carrier of ND in lovebirds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is evidence that several fibroblast growth factors (FGFs) are involved in growth and development of the corpus luteum (CL), but many FGFs have not been investigated in this tissue, including FGF10. The objective of this study was to determine if FGF10 and its receptor (FGFR2B) are expressed in the CL. Bovine CL were collected from an abattoir and classed as corpus hemorrhagica (stage 1), developing (stage 11), developed (stage 111), and regressed (stage IV) CL. Expression of FGF10 and FGFR2B mRNA was measured by reverse transcription-polymerase chain reaction (RT-PCR). Both genes were expressed in bovine CL, and FGF10 expression did not differ between stages of CL development. FGF10 protein was localized to large and small luteal cells by immunohistochemistry. FGFR2B expression was approximately threefold higher in regressed compared to developing and developed CL (P < 0.05). To determine if FGF10 and FGFR2B expression is regulated during functional luteolysis, cattle were injected with PGF2 alpha and CL collected at 0, 0.5, 2, 4, 12, 24, 48, and 64 hr thereafter (n = 5 CL/time point), and mRNA abundance was measured by real-time RT-PCR. FGF10 mRNA expression did not change during functional luteolysis, whereas FGFR2B mRNA abundance decreased significantly at 2, 4, and 12 hr after PGF2a, and returned to pretreatment levels for the period 24-64 hr post-PGF2 alpha. These data suggest a potential role for FGFR2B signaling during structural luteolysis in bovine CL.
Resumo:
Infectious bursal disease (IBD) is an acute, highly contagious viral disease. The diagnosis of IBD depends on time-consuming and costly procedures, like virus isolation on chick embryos and histopathological examination, A double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), immunoperoxidase and reverse transcription polymerase chain reaction (RT-PCR) were applied in this study to detect classical IBD virus (IBDV) after three blind passages of the Lukert strain on chicken embryo related (CER) cell monolayer after different periods of infection: 6, 12, 24 and 48 h, Cytophatic effects were most evident 12 h post-infection (p.i.) but were observed at 6 h p.i. The maximum discrimination between IBDV-infected and uninfected cell suspensions obtained by the use of DAS-ELISA for virus detection corresponded to 0.597+/-0.02 and 0.010+/-0.01 after 12h p.i., respectively. The RT-PCR was performed using the set of primers A3.1 and A3.2 to amplify the VP2 region of the IBDV genome, This molecular technique demonstrated that from 6 h p.i., it was possible to detect the viral RNA. The results show that the CER cell line can be used for classical IBDV propagation, confirmed by the DAS-ELISA, immunoperoxidase and RT-PCR assay.
Resumo:
The susceptibility of the chicken embryo related (CER) cell line to infectious bronchitis virus (IBV M41) was characterized after five consecutive passages in CER cells. Virus replication was monitored by cytopathic effect observation, electron microscopy, indirect immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR). At 96 h post-infection (p.i.), the cytopathic effect was graded 75% by cell fusion, rounding up of cells and monolayer detachment, and the electron microscopy image characterized by coronavirus morphology. Cytoplasmic fluorescence was readily observed by from 24 h p.i. onwards, and at all times the respective viral RNA from IBV-infected monolayers was demonstrated by RT-PCR. Extra-cellular virus was measured by virus titration performed on chicken kidney cells and embryonated chicken eggs, and respective titres ranged from 4.0 to 6.0 log(10) EID50/ml on embryonated chicken eggs, and from 2.0 to 6.0 log(10) TCID50/ml on both CER cells and chicken kidney cells studied from 24 to 120 h p.i. These results confirmed that the M41 strain replicated well in the CER cell line.
Resumo:
Reverse transcription polymerase chain reaction (RT-PCR) of turkey astrovirus (TAstV) capsid and polymerase genes was applied to the bursa of Fabricius (BF), thymus (TH), spleen (SP) and cloacal swabs (CS) of young poults with "Poult enteritis complex" (PEC). The histological lesions included atrophy, lymphoid depletion, cellular infiltration and necrosis of the BF, TH and SP, respectively. The RT-PCR reactions were positive for the polymerase gene of TAstV-2 in all 100 CSs, 7 out of 10 of BFs and 10 out of 20 THs and SPs, respectively. Five out of 10 THs and SPs samples, considered to be negative by RT-PCR, were positive when specific primers designed for the TAstV-2 capsid gene were applied. This is the first description of turkey astrovirus infection presenting PEC in Latin America.
Resumo:
Background: The purpose of this experimental study was to evaluate the collagen fiber distribution histologically after phenytoin, cyclosporin, or nifedipine therapy and to correlate it with collagen I and matrix metalloproteinase (MMP)-1 and -2 gene expression levels.Methods: Gingival samples from the canine area were obtained from 12 male monkeys (Cebus apella). The mesial part of each sample was assessed by reverse transcription-polymerase chain reaction, whereas the distal part was processed histologically for picrosirius red and hematoxylin and eosin stainings, as well as for collagen IV immunostaining. One week after the first biopsy, the animals were assigned to three groups that received daily oral dosages of cyclosporin, phenytoin, or nifedipine for 120 days. Additional gingival samples were obtained on days 52 and 120 of treatment from two animals from each group on the opposite sides from the first biopsies.Results: Picrosirius red staining showed a predominance of mature collagen fibers in the control group. Conversely, there was an enlargement of areas occupied by immature collagen fibers in all groups at days 52 and 120, which was not uniform over each section. There was a general trend to lower levels of MMP-1 gene expression on day 52 and increased levels on day 120. Phenytoin led to increased levels of MMP-2 and collagen I gene expression on day 120, whereas the opposite was observed in the nifedipine group.Conclusion: Cyclosporin, phenytoin, and nifedipine led to phased and drug-related gene expression patterns, resulting in impaired collagen metabolism, despite the lack of prominent clinical signs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to investigate a putative role for nitric oxide (NO) in the central nociceptive processing following carrageenan-induced arthritis in the rat temporomandibular joint (TMJ), we analyzed the immunoreactivity, gene expression and activity of nitric oxide synthases (NOS) in the caudal part of the spinal trigeminal nucleus (Sp5C) during the acute (24 h), chronic (15 days) and chronic-active (14 days-24 h) arthritis. In addition, evaluation of head-withdrawal threshold was carried out in all phases of arthritis under chronic inhibition of nNOS with the selective inhibitor 7-nitroindazole (7-NI). Neurons with nNOS-like immunoreactivity (nNOS-LI) were concentrated mainly in the lamina II of the Sp5C, showing no significant statistical difference during arthritis. Only a discrete percentage of nNOS-LI neurons expressed Fos immunoreactivity. The mRNA expression for both nNOS and endothelial nitric oxide synthases (eNOS) presented no noticeable differences among the groups. No expression of inducible nitric oxide synthase (iNOS) was detected in the Sp5C by either immunohistochemistry or reverse-transcription polymerase chain reaction (RTPCR). Ca(2+)-dependent NOS activity in the ipsilateral Sp5C was significantly higher (108.3 +/- 49.2%; P<0.01) in animals during the chronic arthritis. Interestingly, this increased activity was completely abolished 24 h later, in the chronic-active arthritis. Finally, head-withdrawal threshold decreased significantly in the chronic arthritis in animals under 7-NI chronic inhibition. In conclusion, nNOS immunoreactivity and mRNA expression are stable in the Sp5C during TMJ arthritis evolution, but its activity significantly increases in the chronic-phases supporting an antinociceptive role of the nNOS as evidenced by pain threshold experiment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Actinobacillus actinomycetemcomitans plays a major role in the pathogenesis of aggressive periodontitis. Lipopolysaccharide (LPS) derived from A. actinomycetemcomitans is a key factor in inflammatory cytokine generation within periodontal tissues. In this study, we identify major mitogen-activated protein kinase (MAPK) signaling pathways induced by A. actinomycetemcomitans LPS, Escherichia coli LPS and interleukin-1 beta (IL-1 beta) in a murine periodontal ligament (mPDL) fibroblast cell line. Immunoblot analysis was used to assess the phosphorylated forms of p38, extracellular-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) MAPK following stimulation with A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta. IL-6 mRNA induction was detected via reverse transcription-polymerase chain reaction, while protein levels were quantified via enzyme-linked immunosorbent assays (ELISA). We utilized biochemical inhibitors of p38, ERK and JNK MAPK to identify the MAPK signaling pathways needed for IL-6 expression. Additional use of stable mPDL cell lines containing dominant negative mutant constructs of MAPK kinase-3 and -6 (MKK-3/6) and p38 null mutant mouse embryonic fibroblast (MEF) cells were used to substantiate the biochemical inhibitor data. Blocking p38 MAPK with SB203580 reduced the induction of IL-6 mRNA by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta by > 70%, > 95% and similar to 60%, respectively. IL-6 ELISA indicated that blocking p38 MAPK reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta by similar to 60%, similar to 50% and similar to 70%, respectively. All MAPK inhibitors significantly reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta whereas only p38 inhibitors consistently reduced the A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta induction of IL-6 mRNA steady-state levels. The contribution of p38 MAPK LPS-induced IL-6 expression was confirmed using MKK-3/6 dominant negative stable mPDL cell lines. Wild-type and p38 alpha(-/-) MEF cells provided additional evidence to support the role of p38 alpha MAPK in A. actinomycetemcomitans LPS-stimulated IL-6. Our results indicate that induction of IL-6 by E. coli LPS, IL-1 beta and A. actinomycetemcomitans LPS requires signaling through MKK-3-p38 alpha ERK, JNK and p38 MAPK in mPDL cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.