899 resultados para Return of results
Resumo:
The purpose of this study is to provide a procedure to include emissions to the atmosphere resulting from the combustion of diesel fuel during dredging operations into the decision-making process of dredging equipment selection. The proposed procedure is demonstrated for typical dredging methods and data from the Illinois Waterway as performed by the U.S. Army Corps of Engineers, Rock Island District. The equipment included in this study is a 16-inch cutterhead pipeline dredge and a mechanical bucket dredge used during the 2005 dredging season on the Illinois Waterway. Considerable effort has been put forth to identify and reduce environmental impacts from dredging operations. Though environmental impacts of dredging have been studied no efforts have been applied to the evaluation of air emissions from comparable types of dredging equipment, as in this study. By identifying the type of dredging equipment with the lowest air emissions, when cost, site conditions, and equipment availability are comparable, adverse environmental impacts can be minimized without compromising the dredging project. A total of 48 scenarios were developed by varying the dredged material quantity, transport distance, and production rates. This produced an “envelope” of results applicable to a broad range of site conditions. Total diesel fuel consumed was calculated using standard cost estimating practices as defined in the U.S. Army Corps of Engineers Construction Equipment Ownership and Operating Expense Schedule (USACE, 2005). The diesel fuel usage was estimated for all equipment used to mobilize and/or operate each dredging crew for every scenario. A Limited Life Cycle Assessment (LCA) was used to estimate the air emissions from two comparable dredging operations utilizing SimaPro LCA software. An Environmental Impact Single Score (EISS) was the SimaPro output selected for comparison with the cost per CY of dredging, potential production rates, and transport distances to identify possible decision points. The total dredging time was estimated for each dredging crew and scenario. An average hourly cost for both dredging crews was calculated based on Rock Island District 2005 dredging season records (Graham 2007/08). The results from this study confirm commonly used rules of thumb in the dredging industry by indicating that mechanical bucket dredges are better suited for long transport distances and have lower air emissions and cost per CY for smaller quantities of dredged material. In addition, the results show that a cutterhead pipeline dredge would be preferable for moderate and large volumes of dredged material when no additional booster pumps are required. Finally, the results indicate that production rates can be a significant factor when evaluating the air emissions from comparable dredging equipment.
Resumo:
BACKGROUND: Graphical displays of results allow researchers to summarise and communicate the key findings of their study. Diagnostic information should be presented in an easily interpretable way, which conveys both test characteristics (diagnostic accuracy) and the potential for use in clinical practice (predictive value). METHODS: We discuss the types of graphical display commonly encountered in primary diagnostic accuracy studies and systematic reviews of such studies, and systematically review the use of graphical displays in recent diagnostic primary studies and systematic reviews. RESULTS: We identified 57 primary studies and 49 systematic reviews. Fifty-six percent of primary studies and 53% of systematic reviews used graphical displays to present results. Dot-plot or box-and- whisker plots were the most commonly used graph in primary studies and were included in 22 (39%) studies. ROC plots were the most common type of plot included in systematic reviews and were included in 22 (45%) reviews. One primary study and five systematic reviews included a probability-modifying plot. CONCLUSION: Graphical displays are currently underused in primary diagnostic accuracy studies and systematic reviews of such studies. Diagnostic accuracy studies need to include multiple types of graphic in order to provide both a detailed overview of the results (diagnostic accuracy) and to communicate information that can be used to inform clinical practice (predictive value). Work is required to improve graphical displays, to better communicate the utility of a test in clinical practice and the implications of test results for individual patients.
Resumo:
BACKGROUND: Not all clinical trials are published, which may distort the evidence that is available in the literature. We studied the publication rate of a cohort of clinical trials and identified factors associated with publication and nonpublication of results. METHODS: We analysed the protocols of randomized clinical trials of drug interventions submitted to the research ethics committee of University Hospital (Inselspital) Bern, Switzerland from 1988 to 1998. We identified full articles published up to 2006 by searching the Cochrane CENTRAL database (issue 02/2006) and by contacting investigators. We analyzed factors associated with the publication of trials using descriptive statistics and logistic regression models. RESULTS: 451 study protocols and 375 corresponding articles were analyzed. 233 protocols resulted in at least one publication, a publication rate of 52%. A total of 366 (81%) trials were commercially funded, 47 (10%) had non-commercial funding. 346 trials (77%) were multi-centre studies and 272 of these (79%) were international collaborations. In the adjusted logistic regression model non-commercial funding (Odds Ratio [OR] 2.42, 95% CI 1.14-5.17), multi-centre status (OR 2.09, 95% CI 1.03-4.24), international collaboration (OR 1.87, 95% CI 0.99-3.55) and a sample size above the median of 236 participants (OR 2.04, 95% CI 1.23-3.39) were associated with full publication. CONCLUSIONS: In this cohort of applications to an ethics committee in Switzerland, only about half of clinical drug trials were published. Large multi-centre trials with non-commercial funding were more likely to be published than other trials, but most trials were funded by industry.
Resumo:
OBJECTIVE: Meta-analysis of studies of the accuracy of diagnostic tests currently uses a variety of methods. Statistically rigorous hierarchical models require expertise and sophisticated software. We assessed whether any of the simpler methods can in practice give adequately accurate and reliable results. STUDY DESIGN AND SETTING: We reviewed six methods for meta-analysis of diagnostic accuracy: four simple commonly used methods (simple pooling, separate random-effects meta-analyses of sensitivity and specificity, separate meta-analyses of positive and negative likelihood ratios, and the Littenberg-Moses summary receiver operating characteristic [ROC] curve) and two more statistically rigorous approaches using hierarchical models (bivariate random-effects meta-analysis and hierarchical summary ROC curve analysis). We applied the methods to data from a sample of eight systematic reviews chosen to illustrate a variety of patterns of results. RESULTS: In each meta-analysis, there was substantial heterogeneity between the results of different studies. Simple pooling of results gave misleading summary estimates of sensitivity and specificity in some meta-analyses, and the Littenberg-Moses method produced summary ROC curves that diverged from those produced by more rigorous methods in some situations. CONCLUSION: The closely related hierarchical summary ROC curve or bivariate models should be used as the standard method for meta-analysis of diagnostic accuracy.
Resumo:
We present studies of the spatial clustering of inertial particles embedded in turbulent flow. A major part of the thesis is experimental, involving the technique of Phase Doppler Interferometry (PDI). The thesis also includes significant amount of simulation studies and some theoretical considerations. We describe the details of PDI and explain why it is suitable for study of particle clustering in turbulent flow with a strong mean velocity. We introduce the concept of the radial distribution function (RDF) as our chosen way of quantifying inertial particle clustering and present some original works on foundational and practical considerations related to it. These include methods of treating finite sampling size, interpretation of the magnitude of RDF and the possibility of isolating RDF signature of inertial clustering from that of large scale mixing. In experimental work, we used the PDI to observe clustering of water droplets in a turbulent wind tunnel. From that we present, in the form of a published paper, evidence of dynamical similarity (Stokes number similarity) of inertial particle clustering together with other results in qualitative agreement with available theoretical prediction and simulation results. We next show detailed quantitative comparisons of results from our experiments, direct-numerical-simulation (DNS) and theory. Very promising agreement was found for like-sized particles (mono-disperse). Theory is found to be incorrect regarding clustering of different-sized particles and we propose a empirical correction based on the DNS and experimental results. Besides this, we also discovered a few interesting characteristics of inertial clustering. Firstly, through observations, we found an intriguing possibility for modeling the RDF arising from inertial clustering that has only one (sensitive) parameter. We also found that clustering becomes saturated at high Reynolds number.
Resumo:
Autoantibodies play a key role in diagnostic laboratories as markers of autoimmune diseases. In addition to their role as markers they mediate diverse effects in vivo. Autoantibodies with protective effect have been described. Natural protective IgM autoantibodies against tumour-antigens of malignant cells or their precursors may contribute to increased survival rates of carcinoma patients. In a mouse model of systemic lupus erythematosus it has been shown that anti-dsDNA IgM autoantibodies protect from glomerular damage. In contrast, a direct pathogenic role of autoantibodies has been well established e.g. in myasthenia gravis or in Goodpasture syndrome. Similarly autoantibodies against SSA Ro52 are detrimental in neonatal lupus erythematosus with congenital heart block. Moreover, putatively protective autoantibodies may become pathogenic during the course of the disease such as the onconeuronal autoantibodies whose pathogenicity depends on their compartmentalisation. In patients with paraneoplastic syndromes tumour cells express proteins that are also naturally present in the brain. Anti-tumour autoantibodies which temporarily suppress tumour growth can provoke an autoimmune attack on neurons once having crossed the blood-brain barrier and cause specific neurological symptoms. Only a restricted number of autoantibodies are useful follow-up markers for the effectiveness of treatment in autoimmune diseases. Certain autoantibodies hold prognostic value and appear years or even decades before the diagnosis of disease such as the antimitochondrial antibodies in primary biliary cirrhosis or anti-citrullinated protein (CCP)-antibodies in rheumatoid arthritis. It is crucial to know whether the autoantibodies in question recognise linear or conformational epitopes in order to choose the appropriate detection methods. Indirect immunofluorescence microscopy remains a very useful tool for confirmation of results of commercially available immunoassays and for detection of special and rare autoantibodies that otherwise often remain undetected. Standardisation of autoimmune diagnostics is still underway and requires joint efforts by laboratories, clinicians and industry.
Resumo:
Background: Medical students do not accurately self-assess their competence. However, little is known about the awareness of change of competence over time. The aim of this study was to evaluate if students are aware of their progress. Summary of work: Twenty-two fourth year medical students had self- and expert-assessments of their clinical skills in musculoskeletal medicine in an OSCE like station (4 point Likert scale) at the beginning (t0) and end (t1) of their eight weeks clerkship in internal medicine. Thirteen students were assigned to the intervention of a 6x1 hour practical examination course; nine took part in the regular clinical clerkship activities only and served as controls. Summary of results/Conclusions: The intervention students significantly improved their skills (from 2.78 ± 0.36 to 3.30 ± 0.36, p<0.05) in contrast to the control students (from 3.11 ± 0.58 to 2.83 ± 0.49, n.s.). At t0, 19 students, at t1 21 out of 22 students underestimated their competence. Correlations between the change of self- and expert-assessment were r=0.43, p<0.05 (all), r=0.47, n.s. (control) and r=-0.12, n.s. (intervention), respectively. Take-home message: Medical students improving their clinical skills by an interactive course in addition to their regular clerkship activities are not aware of their progress
Resumo:
BACKGROUND AND PURPOSE: : Proton radiation has been used for the treatment of uveal melanoma since 1975, but few studies have been conducted to assess its efficacy and safety. This paper aims to systematically review the effects and side effects of proton therapy for any indication of the eye. MATERIAL AND METHODS: : A range of databases were searched from inception to 2007. All studies that included at least ten patients and that assessed the efficacy or safety of proton therapy for any indication of the eye were included. RESULTS: : The search generated 2,385 references, of which 37 met the inclusion criteria. Five controlled trials, two comparative studies and 30 case series were found, most often reporting on uveal melanoma, choroidal melanoma and age-related macular degeneration (AMD). Methodological quality of these studies was poor. Studies were characterized by large differences in radiation techniques applied within the studies, and by variation in patient characteristics within and between studies. Results for uveal melanoma and choroidal melanoma suggest favorable survival, with, however, significant rates of side effects. Results for choroidal hemangioma and AMD did not reveal beneficial effects from proton radiation. CONCLUSION: : There is limited evidence on the effectiveness and safety of proton radiation due to the lack of well-designed and well-reported studies. There is a need to lift evidence on proton therapy to a higher level by performing dose-finding randomized controlled trials (RCTs), comparative studies of proton radiation versus standard given alternatives and prospective case studies enrolling only patients treated with up-to-date techniques, allowing extrapolation of results to similar patient groups.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.