947 resultados para Retaining walls
Resumo:
Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.
Resumo:
The function of a building is to ensure safety and thermal comfort for healthy living conditions. Buildings primarily comprise an envelope, which acts as an interface separating the external environment from the indoors environment. The building envelope is primarily responsible for regulating indoor thermal comfort in response to external climatic conditions. It usually comprises a configuration of building materials to thus far provide requisite structural performance. However, studies into building-envelope configurations to provide a particular thermal performance are limited. As the building envelope is exposed to the external environment there will be heat and moisture transfer to the indoor environment through it. The overall phenomenon of heat and moisture transfer depends on the microstructure and configuration within the building material. Further, thermal property of a material is generally dependent on its microstructure, which comprises a network of pores and particles arranged in a definite structure. Thermal behaviour of a building material thus depends on the thermal conductivities of the solid particles, pore micro-structure and its constituent fluid (air and/or moisture). The thermal response of a building envelope is determined by the thermal characteristics of the individual building materials and its configuration. Understanding the heat transfer influenced by the complex networks of pores and particles is a relatively new study in the area of building climatic-response. The current study reviews the heat-transfer mechanisms that determine the thermal performance of a building material attributed to its micro-structure. A theoretical basis for the same is being evolved and its relevance in regulating heat-transfer through building envelopes, walls in particular, is reviewed in this paper. (C) 2014 N.C. Balaji. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Resumo:
Using the dynamic inversion philosophy, a nonlinear partial integrated guidance and control approach is presented in this paper for formation flying. It is based on the evolving philosophy of integrated guidance and control. However, it also retains the advantages of the conventional guidance then control philosophy by retaining the timescale separation between translational and rotational dynamics explicitly. Simulation studies demonstrate that the proposed technique is effective in bringing the vehicles into formation quickly and maintaining the formation.
Resumo:
The goal of this work is to reduce the cost of computing the coefficients in the Karhunen-Loeve (KL) expansion. The KL expansion serves as a useful and efficient tool for discretizing second-order stochastic processes with known covariance function. Its applications in engineering mechanics include discretizing random field models for elastic moduli, fluid properties, and structural response. The main computational cost of finding the coefficients of this expansion arises from numerically solving an integral eigenvalue problem with the covariance function as the integration kernel. Mathematically this is a homogeneous Fredholm equation of second type. One widely used method for solving this integral eigenvalue problem is to use finite element (FE) bases for discretizing the eigenfunctions, followed by a Galerkin projection. This method is computationally expensive. In the current work it is first shown that the shape of the physical domain in a random field does not affect the realizations of the field estimated using KL expansion, although the individual KL terms are affected. Based on this domain independence property, a numerical integration based scheme accompanied by a modification of the domain, is proposed. In addition to presenting mathematical arguments to establish the domain independence, numerical studies are also conducted to demonstrate and test the proposed method. Numerically it is demonstrated that compared to the Galerkin method the computational speed gain in the proposed method is of three to four orders of magnitude for a two dimensional example, and of one to two orders of magnitude for a three dimensional example, while retaining the same level of accuracy. It is also shown that for separable covariance kernels a further cost reduction of three to four orders of magnitude can be achieved. Both normal and lognormal fields are considered in the numerical studies. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this work, we have explored the prospect of segmenting crowd flow in H. 264 compressed videos by merely using motion vectors. The motion vectors are extracted by partially decoding the corresponding video sequence in the H. 264 compressed domain. The region of interest ie., crowd flow region is extracted and the motion vectors that spans the region of interest is preprocessed and a collective representation of the motion vectors for the entire video is obtained. The obtained motion vectors for the corresponding video is then clustered by using EM algorithm. Finally, the clusters which converges to a single flow are merged together based on the bhattacharya distance measure between the histogram of the of the orientation of the motion vectors at the boundaries of the clusters. We had implemented our proposed approach on the complex crowd flow dataset provided by 1] and compared our results by using Jaccard measure. Since we are performing crowd flow segmentation in the compressed domain using only motion vectors, our proposed approach performs much faster compared to other pixel domain counterparts still retaining better accuracy.
Resumo:
Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 degrees C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 mu M. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.
Resumo:
In this paper, we derive analytical expressions for mass and stiffness functions of transversely vibrating clamped-clamped non-uniform beams under no axial loads, which are isospectral to a given uniform axially loaded beam. Examples of such axially loaded beams are beam columns (compressive axial load) and piano strings (tensile axial load). The Barcilon-Gottlieb transformation is invoked to transform the non-uniform beam equation into the axially loaded uniform beam equation. The coupled ODEs involved in this transformation are solved for two specific cases (pq (z) = k (0) and q = q (0)), and analytical solutions for mass and stiffness are obtained. Examples of beams having a rectangular cross section are shown as a practical application of the analysis. Some non-uniform beams are found whose frequencies are known exactly since uniform axially loaded beams with clamped ends have closed-form solutions. In addition, we show that the tension required in a stiff piano string with hinged ends can be adjusted by changing the mass and stiffness functions of a stiff string, retaining its natural frequencies.
Resumo:
The bacterial second messengers (p)ppGpp and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulate important functions, such as transcription, virulence, biofilm formation, and quorum sensing. In mycobacteria, they regulate long-term survival during starvation, pathogenicity, and dormancy. Recently, a Pseudomonas aeruginosa strain lacking (p) ppGpp was shown to be sensitive to multiple classes of antibiotics and defective in biofilm formation. We were interested to find out whether Mycobacterium smegmatis strains lacking the gene for either (p)ppGpp synthesis (Delta rel(Msm)) or c-di-GMP synthesis (Delta dcpA) would display similar phenotypes. We used phenotype microarray technology to compare the growth of the wild-type and the knockout strains in the presence of several antibiotics. Surprisingly, the Delta rel(Msm) and Delta dcpA strains showed enhanced survival in the presence of many antibiotics, but they were defective in biofilm formation. These strains also displayed altered surface properties, like impaired sliding motility, rough colony morphology, and increased aggregation in liquid cultures. Biofilm formation and surface properties are associated with the presence of glycopeptidolipids (GPLs) in the cell walls of M. smegmatis. Thin-layer chromatography analysis of various cell wall fractions revealed that the levels of GPLs and polar lipids were reduced in the knockout strains. As a result, the cell walls of the knockout strains were significantly more hydrophobic than those of the wild type and the complemented strains. We hypothesize that reduced levels of GPLs and polar lipids may contribute to the antibiotic resistance shown by the knockout strains. Altogether, our data suggest that (p)ppGpp and c-di-GMP may be involved in the metabolism of glycopeptidolipids and polar lipids in M. smegmatis.
Resumo:
Engineering of electronic energy band structure in graphene based nanostructures has several potential applications. Substrate induced bandgap opening in graphene results several optoelectronic properties due to the inter-band transitions. Various defects like structures, including Stone-Walls and higher-order defects are observed when a graphene sheet is exfoliated from graphite and in many other growth conditions. Existence of defect in graphene based nanostructures may cause changes in optoelectronic properties. Defect engineered graphene on silicon system are considered in this paper to study the tunability of optoelectronic properties. Graphene on silicon atomic system is equilibrated using molecular dynamics simulation scheme. Based on this study, we confirm the existence of a stable super-lattice. Density functional calculations are employed to determine the energy band structure for the super-lattice. Increase in the optical energy bandgap is observed with increasing of order of the complexity in the defect structure. Optical conductivity is computed as a function of incident electromagnetic energy which is also increasing with increase in the defect order. Tunability in optoelectronic properties will be useful in understanding graphene based design of photodetectors, photodiodes and tunnelling transistors.
Resumo:
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented Delta mimG: Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant Msm Rv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-kappa B, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Resumo:
The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.
Resumo:
A novel design for the geometric configuration of honeycombs using a seamless combination of auxetic and conventional cores- elements with negative and positive Possion ratios respectively, has been presented. The proposed design has been shown to generate a superior band gap property while retaining all major advantages of a purely conventional or purely auxetic honeycomb structure. Seamless combination ensures that joint cardinality is also retained. Several configurations involving different degree of auxeticity and different proportions auxetic and conventional elements have been analyzed. It has been shown that the preferred configurations open up wide and clean band gap at a significantly lower frequency ranges compared to their pure counterparts. In view of existence of band gaps being desired feature for the phononic applications, reported results might be appealing. Use of such design may enable superior vibration control as well. Proposed configurations can be made isovolumic and iso-weight giving designers a fairer ground of applying such configurations without significantly changing size and weight criteria.
Resumo:
Microneedle technology is one of the attractive methods in transdermal drug delivery. However, the clinical applications of this method are limited owing to: complexity in the preparation of multiple coating solutions, drug leakage while inserting the microneedles into the skin and the outer walls of the solid microneedle can hold limited quantity of drug. Here, the authors present the fabrication of an array of rectangular cup shaped silicon microneedles, which provide for reduced drug leakage resulting in improvement of efficiency of drug delivery and possibility of introducing multiple drugs. The fabricated solid microneedles with rectangular cup shaped tip have a total height of 200 mu m. These cup shaped tips have dimensions: 60 x 60 mu m (length x breadth) with a depth of 60 mu m. The cups are filled with drug using a novel in-house built drop coating system. Successful drug dissolution was observed when the coated microneedle was used on mice. Also, using the above method, it is possible to fill the cups selectively with different drugs, which enables simultaneous multiple drug delivery. (C) 2015 American Vacuum Society.
Resumo:
A divergence-free velocity field is usually sought in numerical simulations of incompressible fluids. We show that the particle methods that compute a divergence-free velocity field to achieve incompressibility suffer from a volume conservation issue when a finite time-step position update scheme is used. Further, we propose a deformation gradient based approach to arrive at a velocity field that reduces the volume conservation issues in free surface flows and maintains density uniformity in internal flows while retaining the simplicity of first order time updates. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than the corresponding value of 1200 for a rigid channel or 2100 for a rigid tube. Experiments conducted with very viscous fluids show that there could be an instability even at zero Reynolds number provided the surface is sufficiently soft. Linear stability studies show that the transition Reynolds number is linearly proportional to the wall shear modulus in the low Reynolds number limit, and it increases as the 1/2 and 3/4 power of the shear modulus for the `inviscid' and `wall mode' instabilities at high Reynolds number. While the inviscid instability is similar to that in the flow in a rigid channel, the mechanisms of the viscous and wall mode instabilities are qualitatively different. These involve the transfer of energy from the mean flow to the fluctuations due to the shear work done at the interface. The experimental results for the viscous instability mechanism are in quantitative agreement with theoretical predictions. At high Reynolds number, the instability mechanism has characteristics similar to the wall mode instability. The experimental transition Reynolds number is smaller, by a factor of about 10, than the theoretical prediction for the parabolic flow through rigid tubes and channels. However, if the modification in the tube shape due to the pressure gradient, and the consequent modification in the velocity profile and pressure gradient, are incorporated, there is quantitative agreement between theoretical predictions and experimental results. The transition has important practical consequences, since there is a significant enhancement of mixing after transition.