948 resultados para Resitencia vascular periférica
Resumo:
The vitamin D(3) and nicotine (VDN) model is a model of isolated systolic hypertension (ISH) due to arterial calcification raising arterial stiffness and vascular impedance similar to an aged and stiffened arterial tree. We therefore analyzed the impact of this aging model on normal and diseased hearts with myocardial infarction (MI). Wistar rats were treated with VDN (n = 9), subjected to MI by coronary ligation (n = 10), or subjected to a combination of both MI and VDN treatment (VDN/MI, n = 14). A sham-treated group served as control (Ctrl, n = 10). Transthoracic echocardiography was performed every 2 wk, whereas invasive indexes were obtained at week 8 before death. Calcium, collagen, and protein contents were measured in the heart and the aorta. Systolic blood pressure, pulse pressure, thoracic aortic calcium, and end-systolic elastance as an index of myocardial contractility were highest in the aging model group compared with MI and Ctrl groups (P(VDN) < 0.05, 2-way ANOVA). Left ventricular wall stress and brain natriuretic peptide (P(VDNxMI) = not significant) were highest, while ejection fraction, stroke volume, and cardiac output were lowest in the combined group versus all other groups (P(VDNxMI) < 0.05). The combination of ISH due to this aging model and MI demonstrates significant alterations in cardiac function. This model mimics several clinical phenomena of cardiovascular aging and may thus serve to further study novel therapies.
Resumo:
Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.
Resumo:
INTRODUCTION: The use of vascular plug devices for the occlusion of high-flow lesions is a relatively new and successful procedure in peripheral and cardiopulmonary interventions. We report on the use and efficiency of the Amplatzer vascular plug in a small clinical series and discuss its potential for occlusion of large vessels and high-flow lesions in neurointerventions. METHODS: Between 2005 and 2007 four patients (mean age 38.5 years, range 16-62 years) were treated with the device, in three patients to achieve parent artery occlusion of the internal carotid artery, in one patient to occlude a high-flow arteriovenous fistula of the neck. The application, time to occlusion, and angiographic and clinical results and the follow-up were evaluated. RESULTS: Navigation, positioning and detachment of the device were satisfactory in all cases. No flow-related migration of the plug was seen. The cessation of flow was delayed by a mean of 10.5 min after deployment of the first device. In the procedures involving vessel sacrifice, two devices had to be deployed to achieve total occlusion. No patient experienced new neurological deficits; the 3-month follow-up revealed stable results. CONCLUSION: The Amplatzer vascular plug can be adapted for the treatment of high-flow lesions and parent artery occlusions in the head and neck. In this small series the use of the devices was uncomplicated and safe. The rigid and large delivery device and the delayed cessation of flow currently limit the device's use in neurointerventions.
Resumo:
OBJECTIVES: The objective of this study was to examine determinants of excess coronary artery disease risk in UK South Asians, more prevalent in this population than UK Caucasians, by examining differences in risk factors, vascular function, and endothelial progenitor cells (EPCs). METHODS AND RESULTS: 24 South Asian and 25 Caucasian healthy age-matched nonsmoking men were studied. Vascular function was assessed by flow-mediated and GTN brachial artery dilatation and blood flow responses to infusion of ACh, SNP, and L-NMMA. EPC number and function were measured by flow cytometry (CD34, CD133, and KDR positive cells), and CFU/migration assays. Traditional risk factors and anthropometric measurements were similar in the groups. South Asians had higher fasting insulin levels (6.01 versus 3.62 microU/mL; P = 0.02). South Asians had lower FMD (6.9 versus 8.5%; P = 0.003), L-NMMA response (0.8 versus 1.3 mL/min/100 mL; P = 0.03), mean SNP response (9.5+/-0.6 versus 11.6+/-0.6; P = 0.02), EPC number (0.046+/-0.005% versus 0.085+/-0.009%; P = < 0.001), and CFU ability (CFU 4.29+/-1.57 versus 18.86+/-4.00; P = 0.005). EPC number was the strongest predictor of FMD. Ethnicity was the strongest predictor of EPC number. CONCLUSIONS: Healthy South Asian men are more insulin resistant, and demonstrate endothelial dysfunction and reduced EPC number and function compared with Caucasians. These abnormalities may contribute to their increased CAD risk.
Resumo:
Vascular birthmarks can be classified into hemangioma and vascular malformations. Hemangioma are frequent tumours of early infancy demonstrating endothelial hyperplasia, a history of rapid neonatal growth and slow involution during later childhood. Treatment of hemangioma is dependent of stage and type of the lesion. Given the current availability of drugs, lasers, and other techniques to treat hemangioma safely, philosophy of "benign neglect" should not be considered anymore. Vascular malformations show a normal endothelial turnover, being present at birth and growing commensurately with the child. Exact diagnosis by employing modern diagnostic means,which are able to differentiate low-flow from high flow lesions is important for further therapeutic management. Beside conservative treatment strategies, use of laser, sclerotherapy, interventional embolization and surgical treatment are possible management options. Patients should receive multidisciplinary care in qualified vascular centres.
Resumo:
BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC.
Resumo:
OBJECTIVE: Flow mismatch between the supplying artery and the myocardial perfusion region has been observed in patients with internal thoracic artery grafts. Thus coronary flow changes of arterial (internal thoracic artery grafts) and saphenous (saphenous vein grafts) bypass grafts were studied early and late after coronary artery bypass grafting. METHODS: Thirty patients undergoing elective bypass surgery (internal thoracic artery and saphenous vein grafts) were studied intraoperatively and (17 patients) 3 to 10 months postoperatively. Coronary flow was measured intraoperatively with the transit-time Doppler scanning technique. Postoperatively, flow velocity and coronary flow reserve were determined with the Doppler flow wire technique. Quantitative angiographic analysis was used to determine vessel size for calculation of absolute flow. RESULTS: Intraoperatively, internal thoracic artery graft flow was significantly lower than saphenous vein graft flow (31 +/- 8 vs 58 +/- 29 mL/min, P < .01). Postoperatively, internal thoracic artery graft flow increased significantly to 42 +/- 24 mL/min at 3 months and to 56 +/- 30 mL/min (P < .02 vs intraoperative value) at 10 months, respectively. However, saphenous vein graft flow remained unchanged over time (58 +/- 29 to 50 +/- 27 mL/min at 3 months and 46 +/- 27 mL/min at 10 months). Coronary flow reserve was abnormally low intraoperatively in the internal thoracic artery (1.3 +/- 0.3) and saphenous vein (1.6 +/- 0.5) grafts but increased significantly to normal values in both types of graft at follow-up. CONCLUSIONS: Bypass flow of the internal thoracic artery graft is significantly reduced intraoperatively when compared with that of the saphenous vein graft. However, 3 and 10 months after the operation, flow of the internal thoracic artery graft increases significantly and is similar to saphenous vein graft flow. This finding can be explained by an early flow mismatch of the native internal thoracic artery in the presence of a large perfusion territory. During follow-up, there is vascular remodeling of the internal thoracic artery, probably because of endothelium-mediated mechanisms.
Resumo:
Accelerated vascular calcification is a severe complication of chronic kidney disease contributing to high morbidity and mortality in patients undergoing renal replacement therapy. Sodium thiosulfate is increasingly used for the treatment of soft tissue calcifications in calciphylaxis. Therefore, we determined whether it also prevents development of vascular calcifications in chronic kidney disease. We found that uremic rats treated by thiosulfate had no histological evidence of calcification in the aortic wall whereas almost three-fourths of untreated uremic rats showed aortic calcification. Urinary calcium excretion was elevated and the calcium content of aortic, heart, and renal tissue was significantly reduced in the thiosulfate-treated compared to non-treated animals. Sodium thiosulfate treatment transiently lowered plasma ionized calcium and induced metabolic acidosis. It also lowered bone strength in the treated animals compared to their normal controls. Hence, sodium thiosulfate prevented vascular calcifications in uremic rats, likely by enhancing acid- and/or chelation-induced urinary calcium loss. The negative impact on rat bone integrity necessitates a careful risk-benefit analysis before sodium thiosulfate can be used in individual human patients.
Resumo:
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Resumo:
BACKGROUND & AIMS: Little is known about how endothelial cells respond to injury, regulate hepatocyte turnover and reconstitute the hepatic vasculature. We aimed to determine the effects of the vascular ectonucleotidase CD39 on sinusoidal endothelial cell responses following partial hepatectomy and to dissect purinergic and growth factor interactions in this model. METHODS: Parameters of liver injury and regeneration, as well as the kinetics of hepatocellular and sinusoidal endothelial cell proliferation, were assessed following partial hepatectomy in mice that do not express CD39, that do not express ATP/UTP receptor P2Y2, and in controls. The effects of extracellular ATP on vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-6 responses were determined in vivo and in vitro. Phosphorylation of the endothelial VEGF receptor in response to extracellular nucleotides and growth factors was assessed in vitro. RESULTS: After partial hepatectomy, expression of the vascular ectonucleotidase CD39 increased on sinusoidal endothelial cells. Targeted disruption of CD39 impaired hepatocellular regeneration, reduced angiogenesis, and increased hepatic injury, resulting in pronounced vascular endothelial apoptosis, and decreased survival. Decreased HGF release by sinusoidal endothelial cells, despite high levels of VEGF, reduced paracrine stimulation of hepatocytes. Failure of VEGF receptor-2/KDR transactivation by extracellular nucleotides on CD39-null endothelial cells was associated with P2Y2 receptor desensitization. CONCLUSIONS: Regulated phosphohydrolysis of extracellular nucleotides by CD39 coordinates both hepatocyte and endothelial cell proliferation following partial hepatectomy. Lack of CD39 activity is associated with decreased hepatic regeneration and failure of vascular reconstitution.
Resumo:
Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.