874 resultados para Resistance to antimicrobials
Resumo:
High protein dairy beverages are considered to be mouth drying. The drying sensation may be due to the product protein content; however the mechanism of this mouth drying is uncertain. This study investigated the potential adhesion of milk proteins to porcine oral mucosal tissues and their resistance to wash out with simulated saliva was monitored using fluorescence microscopy. Cadein was found to be more adhesive to porcine mucosa then lactogloubulin. Some investigation into the reason for this difference in mucoadhesion was conducted by thiol-content analysis, rheology and zeta-potential measurements. The higher viscosity of casein solution and smaller zeta-potential is believed to be responsible for its better retention on mucosal surfaces. These findings suggest that casein and whey protein are both capable of binding and eliciting mouth drying in high protein dairy beverages.
Resumo:
BACKGROUND Methyl benzimidazole carbamate (MBC) fungicides are used to control the oilseed rape pathogen Pyrenopeziza brassicae. Resistance to MBCs has been reported in P. brassicae, but the molecular mechanism(s) associated with reductions in sensitivity have not been verified in this species. Elucidation of the genetic changes responsible for resistance, hypothesised to be target-site mutations in β-tubulin, will enable resistance diagnostics and thereby inform resistance management strategies. RESULTS P. brassicae isolates were classified as sensitive, moderately resistant or resistant to MBCs. Crossing P. brassicae isolates of different MBC sensitivities indicated that resistance was conferred by a single gene. The MBC-target encoding gene β-tubulin was cloned and sequenced. Reduced MBC sensitivity of field isolates correlated with β-tubulin amino acid substitutions L240F and E198A. The highest level of MBC resistance was measured for isolates carrying E198A. Negative cross-resistance between MBCs and the fungicides diethofencarb and zoxamide was only measured in E198A isolates. PCR-RFLP was used to screen isolates for the presence of L240F and E198A. The substitutions E198G and F200Y were also detected in DNA samples from P. brassicae populations after cloning and sequencing of PCR products. The frequencies of L240F and E198A in different P. brassicae populations were quantified by pyrosequencing. There were no differences in the frequencies of these alleles between P. brassicae populations sampled from different locations or after fungicide treatment regimes. CONCLUSIONS The molecular mechanisms affecting sensitivity to MBCs in P. brassicae have been identified. Pyrosequencing assays are a powerful tool for quantifying fungicide-resistant alleles in pathogen populations.
Resumo:
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments.
Resumo:
The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment.
Resumo:
Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.
Resumo:
Introduction: Resistance to anticoagulants in Norway rats (Rattus norvegicus) and house mice (Mus domesticus) has been studied in the UK since the early 1960s. In no other country in the world is our understanding of resistance phenomena so extensive and profound. Almost every aspect of resistance in the key rodent target species has been examined in laboratory and field trials and results obtained by independent researchers have been published. It is the principal purpose of this document to present a short synopsis of this information. More recently, however, the development of genetical techniques has provided a definitive means of detection of resistant genotypes among pest rodent populations. Preliminary information from a number of such surveys will also be presented. Resistance in Norway rats: A total of nine different anticoagulant resistance mutations (single nucleotide polymorphisms or SNPs) are found among Norway rats in the UK. In no other country worldwide are present so many different forms of Norway rat resistance. Among these nine SNPs, five are known to confer on rats that carry them a significant degree of resistance to anticoagulant rodenticides. These mutations are: L128Q, Y139S, L120Q, Y139C and Y139F. The latter three mutations confer, to varying degrees, practical resistance to bromadiolone and difenacoum, the two second-generation anticoagulants in predominant use in the UK. It is the recommendation of RRAG that bromadiolone and difenacoum should not be used against rats carrying the L120Q, Y139C and Y139F mutations because this will promote the spread of resistance and jeopardise the long-term efficacy of anticoagulants. Brodifacoum, flocoumafen and difethialone are effective against these three genotypes but cannot presently be used because of the regulatory restriction that they can only be applied against rats that are living and feeding predominantly indoors. Our understanding of the geographical distribution of Norway rat resistance in incomplete but is rapidly increasing. In particular, the mapping of the focus of L120Q Norway rat resistance in central-southern England by DNA sequencing is well advanced. We now know that rats carrying this resistance mutation are present across a large part of the counties of Hampshire, Berkshire and Wiltshire, and the resistance spreads into Avon, Oxfordshire and Surrey. It is also found, perhaps as outlier foci, in south-west Scotland and East Sussex. L120Q is currently the most severe form of anticoagulant resistance found in Norway rats and is prevalent over a considerable part of central-southern England. A second form of advanced Norway rat resistance is conferred by the Y139C mutation. This is noteworthy because it occurs in at least four different foci that are widely geographically dispersed, namely in Dumfries and Galloway, Gloucestershire, Yorkshire and Norfolk. Once again, bromadiolone and difenacoum are not recommended for use against rats carrying this genotype and a concern of RRAG is that continued applications of resisted active substances may result in Y139C becoming more or less ubiquitous across much of the UK. Another type of advanced resistance, the Y139F mutation, is present in Kent and Sussex. This means that Norway rats, carrying some degree of resistance to bromadiolone and difenacoum, are now found from the south coast of Kent, west into the city of Bristol, to Yorkshire in the north-east and to the south-west of Scotland. This difficult situation can only deteriorate further where these three genotypes exist and resisted anticoagulants are predominantly used against them. Resistance in house mice: House mouse is not so well understood but the presence in the UK of two resistant genotypes, L128S and Y139C, is confirmed. House mice are naturally tolerant to anticoagulants and such is the nature of this tolerance, and the presence of genetical resistance, that house mice resistant to the first-generation anticoagulants are considered to be widespread in the UK. Consequently, baits containing warfarin, sodium warfarin, chlorophacinone and coumatetralyl are not approved for use against mice. This regulatory position is endorsed by RRAG. Baits containing brodifacoum, flocoumafen and difethialone are effective against house mice and may be applied in practice because house mouse infestations are predominantly indoors. There are some reports of resistance among mice in some areas to the second-generation anticoagulant bromadiolone, while difenacoum remains largely efficacious. Alternatives to anticoagulants: The use of habitat manipulation, that is the removal of harbourage, denial of the availability of food and the prevention of ingress to structures, is an essential component of sustainable rodent pest management. All are of importance in the management of resistant rodents and have the advantage of not selecting for resistant genotypes. The use of these techniques may be particularly valuable in preventing the build-up of rat infestations. However, none can be used to remove any sizeable extant rat infestation and for practical reasons their use against house mice is problematic. Few alternative chemical interventions are available in the European Union because of the removal from the market of zinc phosphide, calciferol and bromethalin. Our virtual complete reliance on the use of anticoagulants for the chemical control of rodents in the UK, and more widely in the EU, calls for improved schemes for resistance management. Of course, these might involve the use of alternatives to anticoagulant rodenticides. Also important is an increasing knowledge of the distribution of resistance mutations in rats and mice and the use of only fully effective anticoagulants against them.
Resumo:
Background and aims Medicago sativa L. is widely grown in southern Australia, but is poorly adapted to dry, hot summers. This study aimed to identify perennial herbaceous legumes with greater resistance to drought stress and explore their adaptive strategies. Methods Ten herbaceous perennial legume species/accessions were grown in deep pots in a sandy, low-phosphorus field soil in a glasshouse. Drought stress was imposed by ceasing to water. A companion M. sativa plant in each pot minimised differences in leaf area and water consumption among species. Plants were harvested when stomatal conductance of stressed plants decreased to around 10% of well watered plants. Results A range of responses to drought stress were identified, including: reduced shoot growth; leaf curling; thicker pubescence on leaves and stems; an increased root:shoot ratio; an increase, decrease or no change in root distribution with depth; reductions in specific leaf area or leaf water potential; and osmotic adjustment. The suite of changes differed substantially among species and, less so, among accessions. Conclusions The inter- and intra-specific variability of responses to drought-stress in the plants examined suggests a wide range of strategies are available in perennial legumes to cope with drying conditions, and these could be harnessed in breeding/selection programs.
Resumo:
Ectomycorrhizal fungi have been shown to survive sub-zero temperatures in axenic culture and in the field. However, the physiological basis for resistance to freezing is poorly understood. In order to survive freezing, mycelia must synthesise compounds that pro-tect the cells from frost damage, and certain fungal-spe-cific soluble carbohydrates have been implicated in this role. Tissue concentrations of arabitol, mannitol and trehalose were measured in axenic cultures of eight Hebeloma strains of arctic and temperate origin grown at 22, 12, 6 and 2°C. In a separate experiment, mycelia were frozen to –5°C after pre-conditioning at either 2°C or 22°C. For some, especially temperate strains, there was a clear increase in specific soluble carbohydrates at lower growth temperatures. Trehalose and mannitol were present in all strains and the highest concentrations (close to 2.5% and 0.5% dry wt.) were recorded only after a cold period. Arabitol was found in four strains only when grown at low temperature. Cold pre-condi-tioning enhanced recovery of mycelia following freez-ing. In four out of eight strains, this was paralleled by increases in mannitol and trehalose concentration at low temperature that presumably contribute towards cryopro-tection. The results are discussed in an ecological con-text with regard to mycelial overwintering in soil.
Resumo:
Endocrine therapies target the activation of the oestrogen receptor alpha (ERα) via distinct mechanisms, but it is not clear whether breast cancer cells can adapt to treatment using drug-specific mechanisms. Here we demonstrate that resistance emerges via drug-specific epigenetic reprogramming. Resistant cells display a spectrum of phenotypical changes with invasive phenotypes evolving in lines resistant to the aromatase inhibitor (AI). Orthogonal genomics analysis of reprogrammed regulatory regions identifies individual drug-induced epigenetic states involving large topologically associating domains (TADs) and the activation of super-enhancers. AI-resistant cells activate endogenous cholesterol biosynthesis (CB) through stable epigenetic activation in vitro and in vivo. Mechanistically, CB sparks the constitutive activation of oestrogen receptors alpha (ERα) in AI-resistant cells, partly via the biosynthesis of 27-hydroxycholesterol. By targeting CB using statins, ERα binding is reduced and cell invasion is prevented. Epigenomic-led stratification can predict resistance to AI in a subset of ERα-positive patients
Resumo:
With the increasing pressure on crop production from the evolution of herbicide resistance, farmers are increasingly adopting Integrated Weed Management (IWM) strategies to augment their weed control. These include measures to increase the competitiveness of the crop canopy such as increased sowing rate and the use of more competitive cultivars. While there are data on the relative impact of these non-chemical weed control methods assessed in isolation, there is uncertainty about their combined contribution, which may be hindering their adoption. In this article, the INTERCOM simulation model of crop / weed competition was used to examine the combined impact of crop density, sowing date and cultivar choice on the outcomes of competition between wheat (Triticum aestivum) and Alopecurus myosuroides. Alopecurus myosuroides is a problematic weed of cereal crops in North-Western Europe and the primary target for IWM in the UK because it has evolved resistance to a range of herbicides. The model was parameterised for two cultivars with contrasting competitive ability, and simulations run across 10 years at different crop densities and two sowing dates. The results suggest that sowing date, sowing density and cultivar choice largely work in a complementary fashion, allowing enhanced competitive ability against weeds when used in combination. However, the relative benefit of choosing a more competitive cultivar decreases at later sowing dates and higher crop densities. Modelling approaches could be further employed to examine the effectiveness of IWM, reducing the need for more expensive and cumbersome long-term in situ experimentation.
Resumo:
The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments. Int J Prosthodont 2009;22:283-286.
Resumo:
The purpose of this study was to compare, by mechanical in vitro testing, a 2.0-mm system made with poly-L-DL-lactide acid with an analogue titanium-based system. Mandible replicas were used as a substrate and uniformly sectioned on the left mandibular angle. The 4-hole plates were adapted and stabilized passively in the same site in both groups using four screws, 6.0 mm long. During the resistance-to-load test, the force was applied perpendicular to the occlusal plane at three different points: first molar at the plated side; first molar at the contralateral side; and between the central incisors. At 1 mm of displacement, no statistically significant difference was found. At 2 mm displacement, a statistically significant difference was observed when an unfavourable fracture was simulated and the load was applied in the contralateral first molar and when a favourable fracture was simulated and the load was applied between the central incisors. At the failure displacement, a statistically significant difference was observed only when the favourable fracture was simulated and the load was applied on the first molar at the plated side. In conclusion, despite more failure, the poly-L-DL-lactic acid-based system was effective.
Resumo:
Chagas` disease is accompanied by severe anemia and oxidative stress, which may contribute to mortality. In this study, we investigated the role of 5-lipoxygenase (5-LO) in the control of parasitism and anemia associated with oxidative damage of erythrocytes in experimental Trypanosoma cruzi infection. Wild-type C57BL/6, 129Sv mice treated or not with nordihydroguaiaretic acid (NDGA, 5-LO inhibitor), mice lacking the 5-LO enzyme gene (5-LO(-/-)) and inducible nitric oxide synthase gene (iNOS(-/-)) were infected with the Y strain of T cruzi. impairment of 5-LO resulted in increased numbers of trypomastigote forms in the blood and amastigote forms in the heart of infected mice. We assessed oxidative stress in erythrocytes by measuring oxygen uptake, induction time and chemiluminescence following treatment with tert-butyl hydroperoxide (TBH). Our results show that 5-LO metabolites increased lipid peroxidation levels in erythrocytes during the early phase of murine T cruzi infection. NDGA treatment reduced oxidative damage of erythrocytes in C57BL/6 T cruzi-infected mice but not in C57BL/6 iNOS-/- infected mice, showing that the action of NDGA is dependent on endogenous nitric oxide (NO). In addition, our results show that 5-LO metabolites do not participate directly in the development of anemia in infected mice. We conclude that 5-LO products may not only play a major role in controlling heart tissue parasitism, i.e., host resistance to acute infection with T cruzi in vivo, but in the event of an infection also play an important part in erythrocyte oxidative stress, an NO-dependent effect. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.
Resumo:
The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that It sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct Importance of DNA repair is hard to access. Here, it is shown that the Induction of photoproducts by UV light (UV-C) significantly Induces apoptosis In a p53-mutated glioma background. This Is caused by a reduced level of photoproduct repair, resulting In the persistence of DNA lesions in p53-mutated glioma cells. UV-C-Induced apoptosis in p53 mutant glioma cells Is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results Indicate that UV-C-induced apoptosis of p53 mutant glioma cells Is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data Indicate that unrepaired DNA lesions Induce apoptosis In p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that Induce the formation of DNA lesions whose global genomic repair is dependent on p53. (Mol Cancer Res 2009;7(2):237-46)