882 resultados para Reineck.
Resumo:
Mapping the abundance of 13C in leaf-wax components in surface sediments recovered from the seafloor off northwest Africa (0-35°N) reveals a clear pattern of delta13C distribution, indicating systematic changes in the proportions of terrestrial C3 and C4 plant input. At 20°N latitude, we find that isotopically enriched products characteristic of C4 plants account for more than 50% of the terrigenous inputs. This signal extends westward beneath the path of the dust-laden Sahara Air Layer (SAL). High C4 contributions, apparently carried by January trade winds, also extend far into the Gulf of Guinea. Similar distributions are obtained if summed pollen counts for the Chenopodiaceae-Amaranthaceae and the Poaceae are used as an independent C4 proxy. We conclude that the specificity of the latitudinal distribution of vegetation in North West Africa and the pathways of the wind systems (trade winds and SAL) are responsible for the observed isotopic patterns observed in the surface sediments. Molecular-isotopic maps on the marine-sedimentary time horizons (e.g., during the last glacial maximum) are thus a robust tool for assessing the phytogeographic changes on the tropical and sub-tropical continents, which have important implications for the changes in climatic and atmospheric conditions.
Resumo:
The meiofauna of the deep sea areas (800 - 5500 m) between Madeira and Lisbon was quantitatively investigated during "Meteor" cruises in 1970 and 1971. With respect to numbers and biomass the meiofauna (especially nematodes and harpacticoid copepods) of the investigated areas is relatively poor averaging about 66,000 individuals per m**2 and 34 mg per m**2 wet weight biomass (polychaetes and foraminifera excluded). Regional differences are more pronounced in the investigated areas than differences due to depth. A comparison with the results of other authors from other areas confirms the regional variations in the meiofauna abundance of the deep sea.
Resumo:
Barium in marine terrigenous surface sediments of the European Nordic Seas is analysed to evaluate its potential as palaeoproductivity proxy. Biogenic Ba is calculated from Ba and Al data using a conventional approach. For the determination of appropriate detrital Ba/Al ratios a compilation of Ba and Al analyses in rocks and soils of the catchments surrounding the Nordic Seas is presented. The resulting average detrital Ba/Al ratio of 0.0070 is similar to global crustal average values. In the southern Nordic Seas the high input of basaltic material with a low Ba/Al ratio is evident from high values of magnetic susceptibility and low Al/Ti ratios. Most of the Ba in the marine surface sediments is of terrigenous and not of biogenic origin. Variability in the lithogenic composition has been considered by the application of regionally varying Ba/Al ratios. The biogenic Ba values are comparable with those observed in the central Arctic Ocean, they are lower than in other oceanic regions. Biogenic Ba values are correlated with other productivity proxies and with oceanographic data for a validation of the applicability in paleoceanography. In the Iceland Sea and partly in the marginal sea-ice zone of the Greenland Sea elevated values of biogenic Ba indicate seasonal phytoplankton blooms. In both areas paleoproductivities may be reconstructed based on Ba and Al data of sediment cores.
Resumo:
1. Desmoscolecida from the continental slope and the deep-sea bottom (59-4354 m) off the Portuguese and Moroccan coasts are described. 18 species were identified: Desmoscolex bathyalis sp. nov., D. chaetalatus sp. nov., D. eftus sp. nov., D. galeatus sp. nov., D. lapilliferus sp. nov., D. longisetosus Timm, 1970, D. lorenzeni sp. nov., D. perspicuus sp. nov., D. pustulatus sp. nov., Quadricoma angulocephala sp. nov., Q. brevichaeta sp. nov., Q. iberica sp. nov., Q. loricatoides sp. nov., Tricoma atlantica sp. nov., T. bathycola sp. nov., T. beata sp. nov., T. incomposita sp. nov., T. meteora sp. nov., T. mauretania sp. nov. 2. The following new terms are proposed: "Desmos" (ring-shaped concretions consisting of secretion and concretion particles), "desmoscolecoid" and "tricomoid" arrangement of the somatic setae, "regelmaessige" (regular), "unregelmaessige" (irregular), "vollstaendige" (complete) and "unvollstaendige" (incomplete) arrangement of somatic seta (variations in the desmoscolecoid arrangement of the somatic setae). The length of the somatic setae is given in the setal pattern. 3. Desmoscolecida identical as to genus and species exhibit no morphological differences even if forthcoming from different bathymetrical zones (deep sea, sublitoral, litoral) or different environments (marin, freshwater, coastal subsoil water, terrestrial environment). 4. Lorenzen's (1969) contention that thearrangement of the somatic setae is more significant for the natural relationships between the different genera of Desmoscolecida than other characteristics is further confirmed. Species with tricomoid arrangement of somatic setae are regarded as primitive, species with desmoscolecoid arrangement of somatic setae are regarded as more advanced. 5. Three new genus are established: Desmogerlachia gen. nov., Desmolorenzenia gen. nov. and Desmofimmia gen. nov. - Protricoma Timm, 1970 is synonymized with Paratricoma Gerlach, 1964 and Protodesmoscolex Timm, 1970 is synonymized with Desmoscolex Claparede,1863. 6. Checklists of all species of the order Desmoscolecida and keys to species of the subfamilies Tricominae and Desmoscolecinae are provided. 7. The following nomenclatorial changes are suggested: Desmogerlachia papillifer (Gerlach, 1956) comb. nov., D .pratensis (Lorenz, 1969) comb. nov., Desmotimmia mirabilis (Timm, 1970) comb. nov., Paratricoma squamosa (Timm, 1970) comb. nov., Desmolorenzenia crassicauda (Timm, 1970) comb. nov., D. desmoscolecoides (Timm, 1970) comb. nov., D. eurycricus (Filipjev, 1922) comb. nov., D. frontalis (Gerlach, 1952) comb. nov., D. hupferi (Steiner, 1916) comb. nov., D. longicauda (Timm, 1970) comb. nov., D. parva (Timm, 1970) comb. nov., D. platycricus (Steiner, 1916) comb. nov., D. viffata (Lorenzen, 1969) comb. nov., Desmoscolex anfarcficos (Timm, 1970) comb. nov.
Resumo:
Magnetic susceptibility and ice-rafted debris of surface sediments in the Nordic Seas were investigated to reconstruct source areas and recent transport pathways of magnetic minerals. From the distribution of magnetic susceptibility and ice-rafted debris and published data on petrographic tracers for iceberg drift, we reconstructed a counter-clockwise iceberg drift pattern during cooler phases in the Holocene, which is similar to conceptual and numerical models for Weichselian iceberg drift. The release of basaltic debris at Scoresby Sund played a significant role for the magnetic signature of stadial/interstadial events during isotope stage 3 recorded in sediment cores of the Nordic Seas.