967 resultados para Reaction-diffusion equation
Resumo:
Abstract is not available.
Resumo:
Graphene-nanocrystalline metal sulphide composites were prepared by a one-pot reaction. A dispersion of graphite oxide layers in an aqueous solution of metal ions (Cd2+/Zn2+) was reacted with H2S gas, which acts as a sulphide source as well as a reducing agent, resulting in the formation of metal sulphide nanoparticles and simultaneous reduction of graphite oxide sheets to graphene sheets. The surface defect related emissions shown by free metal sulphide particles are quenched in the composites due to the interaction of the surface of the nanoparticles with graphene sheets.
Resumo:
The diffusion coefficient, D, and the ionic mobility, μ, in the protonic conductor ammonium ferrocyanide hydrate have been determined by the isothermal transient ionic current method. D is also determined from the time dependence of the build up of potential across the samples and theretical expressions describing this build up in terms of double exponential dependence on time are obtained. The values obtained are D=3.875×10−11m2s−1 and μ=1.65×10−9 m2V−1s−1.
Resumo:
The variation of the interdiffusion coefficient with the change in composition in the Nb-Mo system is determined in the temperature range of 1800 °C to 1900 °C. It was found that the activation energy has a minimum at around 45 at. pct Nb. The values of the pre-exponential factor and the activation energy for diffusion are compared with the data available in the literature. Further, the impurity diffusion coefficients of Nb in Mo and Mo in Nb are calculated.
Resumo:
Abstract is not available.
Influence of Solvent on Photoinduced Electron-Transfer Reaction: Time-Resolved Resonance Raman Study
Resumo:
Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.
Resumo:
It is shown that in the finite-element formulation of the general quasi-harmonic equation using tetrahedral elements, for every member of the element family there exists just one numerical universal matrix indpendent of the size, shape and material properties of the element. Thus the element matrix is conveniently constructed by manipulating this single matrix along with a set of reverse sequence codes at the same time accounting for the size, shape and material properties in a simple manner.
Resumo:
The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into consideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into onsideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
Bovine serum albumin conjugates of two trinucleotides, dpTpTpA and dTpTpAp, were prepared by linking the trinucleotides through their end phosphates by the ‘carbodiimide method’. Antibodies were raised in rabbits by injecting the trinucleotide-bovine serum albumin conjugates. Analysis by double diffusion in agar gel, quantitative precipitin reaction and its inhibition by haptens showed clearly the presence of antibodies specific to the whole trinucleotide molecule. The titre of antibodies obtained by the trinucleotide-rabbit serum albumin conjugates with their respective antisera was approximately the same, indicating that linking the trinucleotide through either 5′ or 3′ phosphate does not have an appreciable effect on the titre of antibodies. The results also demonstrate that the nucleotide(s) away from the carrier protein is more immunodominant than the one linked directly to the protein.
Resumo:
In this study, nasal swabs taken from multiparous sows at weaning time or from sick pigs displaying symptoms of Glasser's disease from farms in Australia [date not given] were cultured and analysed by polymerase chain reaction (PCR). Within each genotype detected on a farm, representative isolates were serotyped by gel diffusion (GD) testing or indirect haemagglutination (IHA) test. Isolates which did not react in any of the tests were regarded as non-typable and were termed serovar NT. Serovars 1, 5, 12, 13 and 14 were classified as highly pathogenic; serovars 2, 4 and 15 being moderately pathogenic; serovar 8 being slightly pathogenic and serovars 3, 6, 7, 9 and 11 being non-pathogenic. Sows were inoculated with the strain of Haemophilus parasuis (serovars 4, 6 and 9 from Farms 1, 2 and 4, respectively) used for controlled challenge 3 and 5 weeks before farrowing. Before farrowing the sows were divided into control and treatment groups. Five to seven days after birth, the piglets of the treatment group were challenged with a strain from the farm which had were used to vaccinate the sows. The effectiveness of the controlled exposure was evaluated by number of piglets displaying clinical signs possibly related to infection, number of antibiotic treatments and pig mortality. Nasal swabs of sick pigs were taken twice a week to find a correlation to infection. A subsample of pigs was weighed after leaving the weaning sheds. The specificity of a realtime PCR amplifying the infB gene was evaluated with 68 H. parasuis isolates and 36 strains of closely related species. 239 samples of DNA from tissues and fluids of 16 experimentally challenged animals were also tested with the realtime PCR, and the results compared with culture and a conventional PCR. The farm experiments showed that none of the controlled challenge pigs showed any signs of illness due to Glasser's disease, although the treatment groups required more antibiotics than the controls. A total of 556 H. parasuis isolates were genotyped, while 150 isolates were serotyped. H. parasuis was detected on 19 of 20 farms, including 2 farms with an extensive history of freedom from Glasser's disease. Isolates belonging to serovars regarded as potentially pathogenic were obtained from healthy pigs at weaning on 8 of the 10 farms with a history of Glasser's disease outbreaks. Sampling 213 sick pigs yielded 115 isolates, 99 of which belonged to serovars that were either potentially pathogenic or of unknown pathogenicity. Only 16 isolates from these sick pigs were of a serovar known to be non-pathogenic. Healthy pigs also had H. parasuis, even on farms free of Glasser's disease. The realtime PCR gave positive results for all 68 H. parasuis isolates and negative results for all 36 non-target bacteria. When used on the clinical material from experimental infections, the realtime PCR produced significantly more positive results than the conventional PCR (165 compared to 86).
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
A general theory is evolved for a class of macrogrowth models which possess two independent growth-rates. Relations connecting growth-rates to growth geometry are established and some new growth forms are shown to result for models with passivation or diffusion-controlled rates. The corresponding potentiostatic responses, their small and large time behaviours and peak characteristics are obtained. Numerical transients are also presented. An empirical equation is derived as a special case and an earlier equation is corrected. An interesting stochastic result pertaining to nucleation events in the successive layers is proved.