952 resultados para Reaction–diffusion equations
Resumo:
The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics ranging from periodic solutions through to spatio-temporal chaos. In this paper we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.
Resumo:
(Prefácio) This dissertation is submitted for the degree of Masters (Engenharia Informática) at University of Évora. Under the supervision of Professor Francisco Manuel Gonçalves Coelho, i have selected to work on game design. With the specific period of time and resources, an attempt has been made to make a serious educational game. While writing this thesis, the objective was to describe a math game for solving mathematical equations. Injecting learning factor in a game, is a main concern of this project. The document is about the description of ‘X in Balance’ game. This game provides a platform for school aged students to solve the equations by playing game. It also gives a unique dimension of putting fun and math in a same platform. The document describes full detail on the project. The first chapter gives an introduction about the problem faced by students in doing maths and the learning behavior of a game. It also points out the opportunities that this game might brings and the motivation behind doing this work. It describes the game concept and its genre too. Besides, the second chapter tells state of an art of serous educational game. It defines the concept of serious game and its types. Furthermore, it justifies the flexibility of serious games to adapt all learning styles. The impact of serious games on learning is also mentioned. It also includes the related work of other researchers.
Resumo:
We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.
Resumo:
This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at the macroscopic scale. The classical model is a PDE description known as the Navier-Stokes equations. The behavior of solutions is notoriously complex, leading many in the scientific community to describe fluid mechanics using a statistical language. In the physics literature, this is often done in an ad-hoc manner with limited precision about the sense in which the randomness enters the evolution equation. The stochastic PDE community has begun proposing precise models, where a random perturbation appears explicitly in the evolution equation. Although this has been an active area of study in recent years, the existing literature is almost entirely devoted to incompressible fluids. The purpose of this thesis is to take a step forward in addressing this statistical perspective in the setting of compressible fluids. In particular, we study the well posedness for the corresponding system of Stochastic Navier Stokes equations, satisfied by the density, velocity, and temperature. The evolution of the momentum involves a random forcing which is Brownian in time and colored in space. We allow for multiplicative noise, meaning that spatial correlations may depend locally on the fluid variables. Our main result is a proof of global existence of weak martingale solutions to the Cauchy problem set within a bounded domain, emanating from large initial datum. The proof involves a mix of deterministic and stochastic analysis tools. Fundamentally, the approach is based on weak compactness techniques from the deterministic theory combined with martingale methods. Four layers of approximate stochastic PDE's are built and analyzed. A careful study of the probability laws of our approximating sequences is required. We prove appropriate tightness results and appeal to a recent generalization of the Skorohod theorem. This ultimately allows us to deduce analogues of the weak compactness tools of Lions and Feireisl, appropriately interpreted in the stochastic setting.
Resumo:
Nel primo capitolo si riporta il principio del massimo per operatori ellittici. Sarà considerato, in un primo momento, l'operatore di Laplace e, successivamente, gli operatori ellittici del secondo ordine, per i quali si dimostrerà anche il principio del massimo di Hopf. Nel secondo capitolo si affronta il principio del massimo per operatori parabolici e lo si utilizza per dimostrare l'unicità delle soluzioni di problemi ai valori al contorno.
Resumo:
We consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert's method [24] is employed, which generates a Galerkin-type procedure for the numerical solution via rewriting the boundary integrals over the unit sphere and expanding the densities in terms of spherical harmonics. Numerical results are included as well.
Resumo:
In this paper we consider the second order discontinuous equation in the real line, (a(t)φ(u′(t)))′ = f(t,u(t),u′(t)), a.e.t∈R, u(-∞) = ν⁻, u(+∞)=ν⁺, with φ an increasing homeomorphism such that φ(0)=0 and φ(R)=R, a∈C(R,R\{0})∩C¹(R,R) with a(t)>0, or a(t)<0, for t∈R, f:R³→R a L¹-Carathéodory function and ν⁻,ν⁺∈R such that ν⁻<ν⁺. We point out that the existence of heteroclinic solutions is obtained without asymptotic or growth assumptions on the nonlinearities φ and f. Moreover, as far as we know, this result is even new when φ(y)=y, that is, for equation (a(t)u′(t))′=f(t,u(t),u′(t)), a.e.t∈R.
Systems of coupled clamped beams equations with full nonlinear terms: Existence and location results
Resumo:
This work gives sufficient conditions for the solvability of the fourth order coupled system┊
u⁽⁴⁾(t)=f(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t))
v⁽⁴⁾(t)=h(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t))
with f,h: [0,1]×ℝ⁸→ℝ some L¹- Carathéodory functions, and the boundary conditions
{
Resumo:
In this work we study an Hammerstein generalized integral equation u(t)=∫_{-∞}^{+∞}k(t,s) f(s,u(s),u′(s),...,u^{(m)}(s))ds, where k:ℝ²→ℝ is a W^{m,∞}(ℝ²), m∈ℕ, kernel function and f:ℝ^{m+2}→ℝ is a L¹-Carathéodory function. To the best of our knowledge, this paper is the first one to consider discontinuous nonlinearities with derivatives dependence, without monotone or asymptotic assumptions, on the whole real line. Our method is applied to a fourth order nonlinear boundary value problem, which models moderately large deflections of infinite nonlinear beams resting on elastic foundations under localized external loads.
Resumo:
The scalar Schrödinger equation models the probability density distribution for a particle to be found in a point x given a certain potential V(x) forming a well with respect to a fixed energy level E_0. Formally two real inversion points a,b exist such that V(a)=V(b)=E_0, V(x)<0 in (a,b) and V(x)>0 for xb. Following the work made by D.Yafaev and performing a WKB approximation we obtain solutions defined on specific intervals. The aim of the first part of the thesis is to find a condition on E, which belongs to a neighbourhood of E_0, such that it is an eigenvalue of the Schrödinger operator, obtaining in this way global and linear dependent solutions in L2. In quantum mechanics this condition is known as Bohr-Sommerfeld quantization. In the second part we define a Schrödinger operator referred to two potential wells and we study the quantization conditions on E in order to have a global solution in L2xL2 with respect to the mutual position of the potentials. In particular their wells can be disjoint,can have an intersection, can be included one into the other and can have a single point intersection. For these cases we refer to the works of A.Martinez, S. Fujiié, T. Watanabe, S. Ashida.
Resumo:
The main aim of the thesis is to prove the local Lipschitz regularity of the weak solutions to a class of parabolic PDEs modeled on the parabolic p-Laplacian. This result is well known in the Euclidean case and recently has been extended in the Heisenberg group, while higher regularity results are not known in subriemannian parabolic setting. In this thesis we will consider vector fields more general than those in the Heisenberg setting, introducing some technical difficulties. To obtain our main result we will use a Moser-like iteration. Due to the non linearity of the equation, we replace the usual parabolic cylinders with new ones, whose dimension also depends on the L^p norm of the solution. In addition, we deeply simplify the iterative procedure, using the standard Sobolev inequality, instead of the parabolic one.
Resumo:
Nel modo in cui oggigiorno viene intrapresa la ricerca, l’interdisciplinarità assume una posizione di sempre maggior rilievo in pressoché ogni ambito del sapere. Questo è particolarmente evidente nel campo delle discipline STEM (Scienza, Tecnologia, Ingegneria, Matematica), considerando che i problemi a cui esse fanno fronte (si pensi agli studi sul cambiamento climatico o agli avanzamenti nel campo dell’intelligenza artificiale) richiedono la collaborazione ed integrazione di discipline diverse. Anche nella ricerca educativa, l’interdisciplinarità ha acquisito negli ultimi anni una notevole rilevanza ed è stata oggetto di riflessioni teoriche e di valutazioni sulle pratiche didattiche. Nell’ampio contesto di questo dibattito, questa tesi si focalizza sull’analisi dell’interdisciplinarità tra fisica e matematica, ma ancora più nel dettaglio sul ruolo che la matematica ha nei modelli fisici. L’aspetto che si vuole sottolineare è l’esigenza di superare una concezione banale e semplicistica, sebbene diffusa, per la quale la matematica avrebbe una funzione strumentale rispetto alla fisica, a favore invece di una riflessione che metta in luce il ruolo strutturale della formalizzazione matematica per l’avanzamento della conoscenza in fisica. Per fare ciò, si prende in esame il caso di studio dell’oscillatore armonico attraverso due lenti diverse che mettono in luce altrettanti temi. La prima, quella dell’anchor equation, aiuterà a cogliere gli aspetti fondamentali del ruolo strutturale della matematica nella modellizzazione dell’oscillatore armonico. La seconda, quella degli epistemic games, verrà utilizzata per indagare materiale didattico, libri di testo e tutorial, per comprendere come diverse tipologie di risorse possano condurre gli studenti ad intendere in modi diversi la relazione di interdisciplinarità tra fisica e matematica in questo contesto.
Resumo:
Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.
Resumo:
The post harvest cooling and/or freezing processes for horticultural products have been carried out with the objective of removing the heat from these products, allowing them a bigger period of conservation. Therefore, the knowledge of the physical properties that involve heat transference in the fig fruit Roxo de Valinhos is useful for calculating projects and systems of food engineering in general, as well as, for using in equations of thermodynamic mathematical models. The values of conductivity and thermal diffusivity of the whole fig fruit-rami index were determined, and from these values it was determined the value of the specific heat. For these determination it was used the transient method of the Line Heat Source. The results shown that the fig fruit has a thermal conductivity of 0.52 W m-1°C, thermal diffusivity of 1.56 x 10-7 m² s-1, pulp density of 815.6 kg m-3 and specific heat of 4.07 kJ kg-1 °C.
Resumo:
A base-cutter represented for a mechanism of four bars, was developed using the Autocad program. The normal force of reaction of the profile in the contact point was determined through the dynamic analysis. The equations of dynamic balance were based on the laws of Newton-Euler. The linkage was subject to an optimization technique that considered the peak value of soil reaction force as the objective function to be minimized while the link lengths and the spring constant varied through a specified range. The Algorithm of Sequential Quadratic Programming-SQP was implemented of the program computational Matlab. Results were very encouraging; the maximum value of the normal reaction force was reduced from 4,250.33 to 237.13 N, making the floating process much less disturbing to the soil and the sugarcane rate. Later, others variables had been incorporated the mechanism optimized and new otimization process was implemented .