970 resultados para Rain and rainfall
Resumo:
Nitrous oxide (N2O) is a potent greenhouse gas with a global warming potential 298 times higher than carbon dioxide. Soils are a natural source of N2O, contributing 65% of global emissions. This paper is the first in Australia to measure and compare N2O emissions from pre-plant controlled release (CR) and conventional granular (CV) fertilisers in pineapple production using static PVC chambers to capture N2O emissions. Farm 1 cumulative emissions from the CR fertiliser were 3.22 kg ha-1 compared to 6.09 kg ha-1 produced by the CV. At farm 2 the CV blend emitted 2.36 kg ha-1 in comparison to the CR blend of 2.92 kg ha-1. Daily N2O flux rates showed a relationship of direct response to rainfall and soil moisture availability. High emissions were observed for wheel tracks where increased N2O emissions may be linked to soil compaction and waterlogging that creates anaerobic conditions after rain events. Emission measurements over three months highlighted the inconsistencies found in other studies relative to reducing emissions through controlled release nitrogen. More investigations are required to verify the benefits associated with controlled release fertiliser use in pineapples, placement and seasonal timing to address N2O emissions in pineapples.
Resumo:
Lake Albert/Mobutu lies along the Zaire-Uganda border in 43/57 per cent ratio in the faulted depression tending south-west to the north east. It is bounded by latitudes 1o0 n to 2o 20’ N and longitudes 30o 20’ to 31o 20’E. It has a width varying from 35 to 45 km (22 to 28 miles) as measured between the scarps at the lake level. It covers an area of 5600km2 and has a maximum depth of 48m. The major inflow is through the Semiliki, an outflow of Lake Edward, Muzizi and Victoria Nile draining lakes Victoria and Kyoga while the Albert Nile is the outflow. The physical, chemical and biological productivity parameters are summarized in Table 1. The scarp is steep but not sheer and there are at least 4 tracks leading down it to villages on the shore and scarp land scarp is a young one, formed as a result of earth movements of the Pleistocene times, and the numerous streams come down headlong down its thousand feet drop, more often than not in falls (Baker, 1954). Sometimes there appears to be a clean fault; and at other places there is the appearrence of step faulting, although this may be of only a superical nature .The escarpment’s composed of rocks belonging to the pre-Cambrian Basement complex of the content; but the floor of the depression is covered with young sedimentary rocks, known as kaiso beds. In their upper part these latter beds contains many pebbles; whilst low down the occurrence fossiliferous beds is sufficiently rare phenomenon in the interior plateau of Africa. The kaiso beds dated as possibly middle Pleistocene in age, are exposed in various flats on the shore, and they presumably extend under the relatively shallow waters of the lake. A feature of the shore is the development of sandpits and the enclosure of lagoons; and these can be observed in various stages of development at kaiso, Tonya, kibiro, Buhuka and above all, at Butiaba. On an island lake over 1100 km (700 miles) from the shores of the Indian Ocean one can thus study some of the shore-line phenomena usually associated with the sea- coast (Worthington, 1929). In the north, from Butiaba onwards, the flats become wider and from a continuous lowland as the lake shore curves away from the straight edge of the escarpment. At a height of just 610m (2000 feet) above sea-level, the rift valley floor at Butiaba has a mean annual temperature of 25.60c (780 f), from which there is virtually no seasonal variation; and and the mean daily range is only 6.50c (130f) (E.Afr. met. Dept.1953). With a mean annual rainfall of not much more than 762mm (309 inches) and only 92 rain days in ayear, again to judge from Butiaba, conditions in the rift valley are semi-arid; and the vegetation cover consists of grasses and scattered drought-resisting trees and bushes. Only near the stream courses does the vegetation thicken.
Resumo:
Many beef producers within the extensive cattle industry of northern Australia attempt to maintain a constant herd size from year-to-year (fixed stocking), whereas others adjust stock numbers to varying degrees annually in response to changes in forage supply. The effects of these strategies on pasture condition and cattle productivity cannot easily be assessed by grazing trials. Simulation studies, which include feedbacks of changes to pasture condition on cattle liveweight gain, can extend the results of grazing trials both spatially and temporally. They can compare a large number of strategies, over long periods of time, for a range of climate periods, at locations which differ markedly in climate. This simulation study compared the pasture condition and cattle productivity achieved by fixed stocking at the long-term carrying capacity with that of 55 flexible stocking strategies at 28 locations across Queensland and the Northern Territory. Flexible stocking strategies differed markedly in the degree they increased or decreased cattle stocking rates after good and poor pasture growing seasons, respectively. The 28 locations covered the full range in average annual rainfall and inter-annual rainfall variability experienced across northern Australia. Constrained flexibility, which limited increases in stocking rates after good growing seasons to 10% but decreased them by up to 20% after poor growing seasons, provides sustainable productivity gains for cattle producers in northern Australia. This strategy can improve pasture condition and increase cattle productivity relative to fixed stocking at the long-term carrying capacity, and its capacity to do this was greatest in the semiarid rangeland regions that contain the majority of beef cattle in northern Australia. More flexible stocking strategies, which also increased stocking rates after good growing seasons by only half as much as they decreased them after poor growing seasons, were equally sustainable and more productive than constrained flexibility, but are often impractical at property and industry scales. Strategies with the highest limits (e.g. 70%) for both annual increases and decreases in stocking rates could achieve higher cattle productivity, but this was at the expense of pasture condition and was not sustainable. Constrained flexible stocking, with a 10% limit for increases and a 20% limit for decreases in stocking rates annually, is a risk-averse adaptation to high and unpredictable rainfall variability for the extensive beef industry of northern Australia. © Australian Rangeland Society 2016.
Resumo:
The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have been emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rainfall amounts. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e. RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance, but also for use in hydrological modeling. The results show that the RCs considering measurement errors derived from laboratory experiments provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Even assuming higher uncertainties for RCs as obtained from the laboratory up to a certain level is observed practical.
Resumo:
The TOPEX/POSEIDON mission offers the first opportunity to observe rain cells over the ocean by a dual-frequency radar altimeter (TOPEX) and simultaneously observe their natural radiative properties by a three-frequency radiometer (TOPEX microwave radiometer (TMR)). This work is a feasibility study aimed at understanding the capability and potential of the active/passive TOPEX/TMR system for oceanic rainfall detection. On the basis of past experiences in rain flagging, a joint TOPEX/TMR rain probability index is proposed. This index integrates several advantages of the two sensors and provides a more reliable rain estimate than the radiometer alone. One year's TOPEX/TMR TMR data are used to test the performance of the index. The resulting rain frequency statistics show quantitative agreement with those obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS) in the Intertropical Convergence Zone (ITCZ), while qualitative agreement is found for other regions of the world ocean. A recent finding that the latitudinal frequency of precipitation over the Southern Ocean increases steadily toward the Antarctic continent is confirmed by our result. Annual and seasonal precipitation maps are derived from the index. Notable features revealed include an overall similarity in rainfall pattern from the Pacific, the Atlantic, and the Indian Oceans and a general phase reversal between the two hemispheres, as well as a number of regional anomalies in terms of rain intensity. Comparisons with simultaneous Global Precipitation Climatology Project (GPCP) multisatellite precipitation rate and COADS rain climatology suggest that systematic differences also exist. One example is that the maximum rainfall in the ITCZ of the Indian Ocean appears to be more intensive and concentrated in our result compared to that of the GPCP. Another example is that the annual precipitation produced by TOPEX/TMR is constantly higher than those from GPCP and COADS in the extratropical regions of the northern hemisphere, especially in the northwest Pacific Ocean. Analyses of the seasonal variations of prominent rainy and dry zones in the tropics and subtropics show various behaviors such as systematic migration, expansion and contraction, merging and breakup, and pure intensity variations, The seasonality of regional features is largely influenced by local atmospheric events such as monsoon, storm, or snow activities. The results of this study suggest that TOPEX and its follow-on may serve as a complementary sensor to the special sensor microwave/imager in observing global oceanic precipitation.
Resumo:
O estudo foi efetuado durante o período de chuva (dezembro-fevereiro) em seis viveiros de produção semi-intensiva de peixes, a fim de avaliar o efeito da chuva na qualidade da água de viveiros que apresentam fluxo contínuo de água, a qual é passada de um viveiro para outro sem tratamento prévio. Foram amostrados oito pontos de coleta nas saídas dos viveiros. O viveiro P1 (próximo à nascente) apresentou as menores concentrações físicas e químicas da água e as maiores no viveiro P4 (considerado um ponto crítico recebendo material alóctone proveniente de outros viveiros e do escoamento do setor de criação de rãs). A disposição seqüencial dos viveiros estudados promoveu aumento nas concentrações dos nutrientes, clorofila-a e condutividade. As chuvas características desta época do ano aumentaram o fluxo de água nos viveiros e conseqüentemente, carreando material particulado e dissolvido de um viveiro para outro e, promovendo um aumento das variáveis limnológicas em direção do P3 ao P6. Os resultados sugerem que a chuva no período de estudo afetou positivamente a qualidade da água dos viveiros estudados, porém, como os sistemas analisados estão dispostos em distribuição seqüencial e escoamento constante da água de viveiros e tanques paralelos sem tratamento prévio, cuidados devem ser averiguados para que o aumento do fluxo de água provocado pelas chuvas não tenha efeito adverso nos viveiros estudados.
Resumo:
Tropical Rainfall Measuring Mission (TRMM) rainfall retrieval algorithms are evaluated in tropical cyclones (TCs). Differences between the Precipitation Radar (PR) and TRMM Microwave Imager (TMI) retrievals are found to be related to the storm region (inner core vs. rainbands) and the convective nature of the precipitation as measured by radar reflectivity and ice scattering signature. In landfalling TCs, the algorithms perform differently depending on whether the rainfall is located over ocean, land, or coastal surfaces. Various statistical techniques are applied to quantify these differences and identify the discrepancies in rainfall detection and intensity. Ground validation is accomplished by comparing the landfalling storms over the Southeast US to the NEXRAD Multisensor Precipitation Estimates (MPE) Stage-IV product. Numerous recommendations are given to algorithm users and developers for applying and interpreting these algorithms in areas of heavy and widespread tropical rainfall such as tropical cyclones.
Resumo:
This study computed trends in extreme precipitation events of Florida for 1950-2010. Hourly aggregated rainfall data from 24 stations of the National Climatic Data Centre were analyzed to derive time-series of extreme rainfalls for 12 durations, ranging from 1 hour to 7 day. Non-parametric Mann-Kendall test and Theil-Sen Approach were applied to detect the significance of trends in annual maximum rainfalls, number of above threshold events and average magnitude of above threshold events for four common analysis periods. Trend Free Pre-Whitening (TFPW) approach was applied to remove the serial correlations and bootstrap resampling approach was used to detect the field significance of trends. The results for annual maximum rainfall revealed dominant increasing trends at the statistical significance level of 0.10, especially for hourly events in longer period and daily events in recent period. The number of above threshold events exhibited strong decreasing trends for hourly durations in all time periods.
Resumo:
In Colombia coffee production is facing risks due to an increase in the variability and amount of rainfall, which may alter hydrological cycles and negatively influence yield quality and quantity. Shade trees in coffee plantations, however, are known to produce ecological benefits, such as intercepting rainfall and lowering its velocity, resulting in a reduced net-rainfall and higher water infiltration. In this case study, we measured throughfall and soil hydrological properties in four land use systems in Cauca, Colombia, that differed in stand structural parameters: shaded coffee, unshaded coffee, secondary forest and pasture. We found that throughfall was rather influenced by stand structural characteristics than by rainfall intensity. Lower throughfall was recorded in the shaded coffee compared to the other systems when rain gauges were placed at a distance of 1.0 m to the shade tree. The variability of throughfall was high in the shaded coffee, which was due to different canopy characteristics and irregular arrangements of shade tree species. Shaded coffee and secondary forest resembled each other in soil structural parameters, with an increase in saturated hydraulic conductivity and microporosity, whereas bulk density and macroporosity decreased, compared to the unshaded coffee and pasture. In this context tree-covered systems indicate a stronger resilience towards changing rainfall patterns, especially in mountainous areas where coffee is cultivated.
Resumo:
Conservation Agriculture (CA) is mostly referred to in the literature as having three principles at the core of its identity: minimum soil disturbance, permanent organic soil cover and crop diversity. This farming package has been described as suitable to improve yields and livelihoods of smallholders in semi-arid regions of Kenya, which since the colonial period have been heavily subjected to tillage. Our study is based on a qualitative approach that followed local meanings and understandings of soil fertility, rainfall and CA in Ethi and Umande located in the semi-arid region of Laikipia, Kenya. Farm visits, 53 semistructured interviews, informal talks were carried out from April to June 2015. Ethi and Umande locations were part of a resettlement programme after the independence of Kenya that joined together people coming from different farming contexts. Since the 1970–80s, state and NGOs have been promoting several approaches to control erosion and boost soil fertility. In this context, CA has also been promoted preferentially since 2007. Interviewees were well acquainted with soil erosion and the methods to control it. Today, rainfall amount and distribution are identified as major constraints to crop performance. Soil fertility is understood as being under control since farmers use several methods to boost it (inorganic fertilisers, manure, terraces, agroforestry, vegetation barriers). CA is recognised to deliver better yields but it is not able to perform well under severe drought and does not provide yields as high as ‘promised’ in promotion campaigns. Moreover, CA is mainly understood as “cultivating with chemicals”, “kulima na dawa”, in kiswahili. A dominant view is that CA is about minimum tillage and use of pre-emergence herbicides. It is relevant to reflect about what kind of CA is being promoted and if elements like soil cover and crop rotation are given due attention. CA based on these two ideas, minimum tillage and use of herbicides, is hard to stand as a programme to be promoted and up-scaled. Therefore CA appears not to be recognised as a convincing approach to improve the livelihoods in Laikipia.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.
Resumo:
Sclerolobium paniculatum Vogel is a species that has good potential for reclamation of degraded soils. The aim of the investigation was to evaluate the growth and survival of the species and the influence of rainfall on growth in diameter as a function of different spacings (4 m x 2 m, 4 m x 3 m, and 4 m x 4 m). The results indicate that the temporal analysis (period from November 2007 to August 2013) detected significant differences (p ? 0.05) in height between the 4 m x 2 m and 4 m x 4 m spacings, while no significant difference in diameter was found between the 4 m x 2 m and 4 m x 3 m spacings. However, the statistical differences did not persist when the data was analyzed at seven and half years old. Regarding survival, a significant difference was observed only between the 4 m x 4 m spacing and the others, with superiority to the former. A strong correlation was found between rainfall and the increment in diameter of individuals in the broader spacings (R = 0.80 in the 4 m x 3 m spacing and R = 0.77 in the 4 m x 4 m spacing), while in the denser spacing the correlation was moderate (R = 0.56 in the 4 m x 2 m spacing). Since the spacings adopted did not influence tree growth by the end of the period, the choice will depend on other factors such as survival and costs of implementation and forestry management. Plantations in regions with larger rainfall amplitude may benefit the productivity of the species.
Resumo:
2016
Resumo:
There are many natural events that can negatively affect the urban ecosystem, but weather-climate variations are certainly among the most significant. The history of settlements has been characterized by extreme events like earthquakes and floods, which repeat themselves at different times, causing extensive damage to the built heritage on a structural and urban scale. Changes in climate also alter various climatic subsystems, changing rainfall regimes and hydrological cycles, increasing the frequency and intensity of extreme precipitation events (heavy rainfall). From an hydrological risk perspective, it is crucial to understand future events that could occur and their magnitude in order to design safer infrastructures. Unfortunately, it is not easy to understand future scenarios as the complexity of climate is enormous. For this thesis, precipitation and discharge extremes were primarily used as data sources. It is important to underline that the two data sets are not separated: changes in rainfall regime, due to climate change, could significantly affect overflows into receiving water bodies. It is imperative that we understand and model climate change effects on water structures to support the development of adaptation strategies. The main purpose of this thesis is to search for suitable water structures for a road located along the Tione River. Therefore, through the analysis of the area from a hydrological point of view, we aim to guarantee the safety of the infrastructure over time. The observations made have the purpose to underline how models such as a stochastic one can improve the quality of an analysis for design purposes, and influence choices.