989 resultados para Railroad accidents


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The core business of public health is to protect and promote health in the population. Public health planning is the means to maximise these aspirations. Health professionals develop plans to address contemporary health priorities as the evidence about changing patterns of mortality and morbidity is presented. Officials are also alert to international trends in patterns of disease that have the potential to affect the health of Australians. Integrated planning and preparation is currently underway involving all emergency health services, hospitals and population health units to ensure Australia's quick and efficient response to any major infectious disease outbreak, such as avian influenza (bird flu). Public health planning for the preparations for the Sydney Olympics and Paralympic Games in 2000 took almost three years. ‘Its major components included increased surveillance of communicable disease; presentations to sentinel emergency departments; medical encounters at Olympic venues; cruise ship surveillance; environmental and food safety inspections; bioterrorism surveillance and global epidemic intelligence’ (Jorm et al 2003, 102). In other words, the public health plan was developed to ensure food safety, hospital capacity, safe crowd control, protection against infectious diseases, and an integrated emergency and disaster plan. We have national and state plans for vaccinating children against infectious diseases in childhood; plans to promote dental health for children in schools; and screening programs for cervical, breast and prostate cancer. An effective public health response to a change in the distribution of morbidity and mortality requires planning. All levels of government plan for the public’s health. Local governments (councils) ensure healthy local environments to protect the public’s health. They plan parks for recreation, construct traffic-calming devices near schools to prevent childhood accidents, build shade structures and walking paths, and even embed drafts/chess squares in tables for people to sit and play. Environmental Health officers ensure food safety in restaurants and measure water quality. These public health measures attempt to promote the quality of life of residents. Australian and state governments produce plans that protect and promote health through various policy and program initiatives and innovations. To be effective, program plans need to be evaluated. However, building an integrated evaluation plan into a program plan is often forgotten, as planning and evaluation are seen as two distinct entities. Consequently, it is virtually impossible to measure, with any confidence, the extent to which a program has achieved its goals and objectives. This chapter introduces you to the concepts of public health program planning and evaluation. Case studies and reflection questions are presented to illustrate key points. As various authors use different terminology to describe the same concepts/actions of planning and evaluation, the glossary at the back of this book will help you to clarify the terms used in this chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Inflatable Rescue Boat (IRB) is arguably the most effective rescue tool used by the Australian surf lifesavers. The exceptional features of high mobility and rapid response have enabled it to become an icon on Australia's popular beaches. However, the IRB's extensive use within an environment that is as rugged as it is spectacular, has led it to become a danger to those who risk their lives to save others. Epidemiological research revealed lower limb injuries to be predominant, particularly the right leg. The common types of injuries were fractures and dislocations, as well as muscle or ligament strains and tears. The concern expressed by Surf Life Saving Queensland (SLSQ) and Surf Life Saving Australia (SLSA) led to a biomechanical investigation into this unique and relatively unresearched field. The aim of the research was to identify the causes of injury and propose processes that may reduce the instances and severity of injury to surf lifesavers during IRB operation. Following a review of related research, a design analysis of the craft was undertaken as an introduction to the craft, its design and uses. The mechanical characteristics of the vessel were then evaluated and the accelerations applied to the crew in the IRB were established through field tests. The data were then combined and modelled in the 3-D mathematical modelling and simulation package, MADYMO. A tool was created to compare various scenarios of boat design and methods of operation to determine possible mechanisms to reduce injuries. The results of this study showed that under simulated wave loading the boats flex around a pivot point determined by the position of the hinge in the floorboard. It was also found that the accelerations experienced by the crew exhibited similar characteristics to road vehicle accidents. Staged simulations indicated the attributes of an optimum foam in terms of thickness and density. Likewise, modelling of the boat and crew produced simulations that predicted realistic crew response to tested variables. Unfortunately, the observed lack of adherence to the SLSA footstrap Standard has impeded successful epidemiological and modelling outcomes. If uniformity of boat setup can be assured then epidemiological studies will be able to highlight the influence of implementing changes to the boat design. In conclusion, the research provided a tool to successfully link the epidemiology and injury diagnosis to the mechanical engineering design through the use of biomechanics. This was a novel application of the mathematical modelling software MADYMO. Other craft can also be investigated in this manner to provide solutions to the problem identified and therefore reduce risk of injury for the operators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimated 640,700 persons suffered a work-related injury or illness in 2009-2010 and 444 lost their lives as a result in 2008-2009, in Australia Very little is known about what proportion of accidents are directly attributable to the effects of AOD Anecdotal evidence highlights issues of AOD and its association with safety risk on construction sites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.