944 resultados para Radioactive substances in soils.
Resumo:
This work deals with removal of Cesium (radioactive waste) in dilute aqueous phase by adsorption. Fullers earth was used as an adsorbent. The adsorption capacity of Fullers earth with respect to Cesium was found to be high, 26.3 mg / g of adsorbent.
Resumo:
Historically, peptidergic substances (in the form of neurosecretions) were linked to moulting in nematodes. More recently, there has been a renewal of interest in nematode neurobiology, initially triggered by studies demonstrating the localization of peptide immunoreactivities to the nervous system. Here, David Brownlee, Ian Fairweather, Lindy Holden-Dye and Robert Walker will review progress on the isolation of nematode neuropeptides and efforts to unravel their physiological actions and inactivation mechanisms. Future avenues for research are suggested and the potential exploitation of peptidergic pathways in future therapeutic strategies highlighted.
Resumo:
To assess the efficiency of different agro-environmental strategies used to reduce groundwater pollution by nitrates, transport modelling in soils and groundwater has been carried out on two withdrawal areas in an alluvial plain. In a first time, the agro-environmental model AgriFlux allowed the simulation of water and nitrates fluxes flowing to groundwater. This model was calibrated for each agro-pedological unit of the studied territory. In a second time, the application of the hydrogeological model MODFLOW-MT3D allowed the simulation of nitrate transport in groundwater for the 1980-2004 period. This soil-groundwater coupled modelling has shown that soil nature is the first factor that conditions the vulnerability to nitrates. Thus, nitrate leaching occurs preferentially under sandy soils. Efficiency of different agro-environmental operations for groundwater quality recovery was quantified. The best results are obtained by combination of (1) grassland re-installation on sandy agricultural lots located in near well protection perimeter and (2) fertilization reduction on sandy agricultural lots located in the well alimentation area upstream the near protection perimeter. On other soils, the effect of grassland on groundwater quality improvement is more limited. Nevertheless, the control of nitrate fertilisation remains essential and is justified in both near and far well protection perimeters. Modelling thus allows optimising and priorizing agro-environmental actions in alluvial agricultural zones. [Comte J.-C., Banton O., Kockmann F., Villard A., Creuzot G. (2006), Assessment of groundwater quality recovery strategies using nitrate transport modelling. Application to the Saône alluvial formations (Tournus, Saône-et-Loire), Ingénieries Eau-Agriculture-Territoires, 45, 15-28]
Resumo:
The localization and distribution of cholinergic, serotoninergic and peptidergic nerve elements in the proteocephalidean tapeworm, Proteocephalus pollanicola, have been investigated by enzyme histochemistry, and by an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy. Cholinesterase (ChE) activity was localized in the major components of the central nervous system (CNS) and the peripheral nervous system (PNS), including the innervation of the reproductive structures of the worm. Serotoninergic (5-HT) nerves were found in the paired cerebral ganglia, transverse commissure and in the 10 longitudinal nerve cords. Antisera to 17 mammalian regulatory peptides and the invertebrate peptide FMRFamide have been used to explore the peptidergic nervous system of the worm. The most extensive immunostaining occurred with antisera raised to members of the neuropeptide Y superfamily, namely neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). In all cases, intense immunoreactivity was found in numerous cell bodies and fibres of both the CNS and PNS, including the innervation of the reproductive apparatus. FMRFamide antisera stained the same structures to a comparable degree as those raised to the NPY superfamily. Cholinergic and peptidergic elements were much more prevalent within the CNS, while the serotoninergic nerve fibres tended to dominate in the PNS. The overlap obtained in staining patterns for the peptidergic and cholinergic components suggests that there may be a certain amount of co-localization of peptides with small-molecule transmitter substances in the same neurone. Weak staining for the tachykinin, substance P and for calcitonin gene-related peptide(CGRP) was confined to the major longitudinal nerve cords.
Resumo:
The skin secretions of frogs and toads (Anura) have long been a known source of a vast abundance of bioactive substances. In the past decade, transcriptome data of the granular glands of anuran skin has given new impetus to investigations of the putative constituent peptides. Alytes obstetricans was recently investigated and novel peptides with antimicrobial activity were isolated and functionally characterised. However, genetic data for the evolutionarily ancient lineage to which Alytes belongs (midwife toads; Alytidae) remains unavailable.
Here we present the first such genetic data for Alytidae, derived via the granular gland transcriptome of a closely-related species of midwife toad, Alytes maurus. First, we present nucleotide sequences of the entire peptide precursors for four novel antimicrobial peptides (AMPs). The two precursors resemble those from Bombinatoridae in both their structural architecture and amino acid sequence. Each precursor comprises two AMPs as tandem repeats, with a member of the alyteserin-1 family (alyteserin-1Ma: GFKEVLKADLGSLVKGIAAHVAN-NH2 or alyteserin-1Mb: GFKEVLKAGLGSLVKGIPAHVAN-NH2) followed by its corresponding member from the alyteserin-2 family (alyteserin-2Ma: FIGKLISAASGLLSHL-NH2 or alyteserin-2Mb: ILGAIIPLVSGLLSHL-NH2). Synthetic replicates of the four AMPs possessed minimal inhibitory concentrations (MICs) ranging from 9.5 to 300 µM, with the most potent being alyteserin-2Ma. Second, we also cloned the cDNA encoding an alytesin precursor, with the active alytesin exhibiting high sequence identity to bombesin-related peptides from other frogs. All putative mature peptide sequences were confirmed to be present in the skin secretion via LC/MS.
The close structural resemblance of the alyteserin genes that we isolated for A. maurus with those of Bombina provide independent molecular evidence for a close evolutionary relationship between these genera as well as more support for the convergent evolution of the AMP system within anurans. In contrast to the more evolutionarily conserved nature of neuropeptides (including alytesin, which we also isolated), the more variable nature of the AMP system together with the sporadic distribution of AMPs among anuran amphibians fuels in part our hypothesis that the latter system was co-opted secondarily to fulfil a function in the innate immune system, having originally evolved for defence against potential macropredators.
Resumo:
Burning seaweed to produce kelp, valued for its high potash and soda content, was formerly a significant industry in remote coastal areas of Scotland and elsewhere. Given the high concentrations of arsenic in seaweeds, up to 100 mg kg(-1), this study investigates the possibility that the kelp industry caused arsenic contamination of these pristine environments. A series of laboratory-scale seaweed burning experiments was conducted, and analysis of the products using HPLC ICP-MS shows that at least 40% of the arsenic originally in the seaweed could have been released into the fumes. The hypothesis that the burning process transforms arsenic from low toxicity arsenosugars in the original seaweeds (Fucus vesiculosus and Laminaria digitata) to highly toxic inorganic forms, predominantly arsenate, is consistent with As speciation analysis results. A field study conducted on Westray, Orkney, once a major centre for kelp production, shows that elevated arsenic levels (10.7+/-3.0 mg kg(-1), compared to background levels of 1.7+/-0.2 mg kg(-1)) persist in soils in the immediate vicinity of the kelp burning pits. A model combining results from the burning experiments with data from historical records demonstrates the potential for arsenic deposition of 47 g ha(-1) year(-1) on land adjacent to the main kelp burning location on Westray, and for arsenic concentrations exceeding current UK soil guideline values during the 50 year period of peak kelp production.
Resumo:
This research investigates the relationship between elevated trace elements in soils, stream sediments and stream water and the prevalence of Chronic Kidney Disease (CKD). The study uses a collaboration of datasets provided from the UK Renal Registry Report (UKRR) on patients with renal diseases requiring treatment including Renal Replacement Therapy (RRT), the soil geochemical dataset for Northern Ireland provided by the Tellus Survey, Geological Survey of Northern Ireland (GSNI) and the bioaccessibility of Potentially Toxic Elements (PTEs) from soil samples which were obtained from the Unified Barge Method (UBM). The relationship between these factors derives from the UKRR report which highlights incidence rates of renal impaired patients showing regional variation with cases of unknown aetiology. Studies suggest a potential cause of the large variation and uncertain aetiology is associated with underlying environmental factors such as the oral bioaccessibility of trace elements in the gastrointestinal tract.
As previous research indicates that long term exposure is related to environmental factors, Northern Ireland is ideally placed for this research as people traditionally live in the same location for long periods of time. Exploratory data analysis and multivariate analyses are used to examine the soil, stream sediments and stream water geochemistry data for a range of key elements including arsenic, lead, cadmium and mercury identified from a review of previous renal disease literature. The spatial prevalence of patients with long term CKD is analysed on an area basis. Further work includes cluster analysis to detect areas of low or high incidences of CKD that are significantly correlated in space, Geographical Weighted Regression (GWR) and Poisson kriging to examine locally varying relationship between elevated concentrations of PTEs and the prevalence of CKD.
Resumo:
Durability of concrete structures is primarily dependent on the environmental influences, i.e. the penetration of aggressive substances in the structural element from the environment. Penetrability is an important durability indicator of concrete and by specifying different classes of penetrability of concrete it should be possible to design a structure with the required resistance to environmental loads. This chapter covers descriptions of the available and commonly applied in situ and laboratory, non-invasive and semi-invasive test methods for evaluating concrete penetrability properties.
Resumo:
A new technological approach in the analysis and forensic interpretation of Total Hydrocarbons in soils and waters using 2D Gas Chromatography method (GC-GC) was developed alongside environmental forensic and the assessment models to provide better customer products for the environmental industry.
The objective was to develop an analytical methodology for TPH CWG. Raw data from this method is then to be evaluated for forensic interpretation and risk assessment modelling. Access will be made available to the expertise in methods of forensic tracing contaminant sources, transport modelling, human health risk modelling and detailed quantitative risk assessment.
The quantification of internal standards was key to the development of this method. As the laboratory does not test for TPH in 1D, it was requested during INAB ISO 17025 audit to individually map out where each compound falls chromatographically in the 2D. This was done through comparing carbon equivalent numbers to the n-alkane carbons. This proved e.g. 2-methylnaphthalene has 11 carbons in its structure; its carbon equivalent is 12.84 , the result of which falls within the band of Aromatic eC12-eC16 as opposed to expected eC10-eC12. This was carried out for all 16 PAH (polyaromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene and o, m and p-xylenes). The n-alkanes were also assigned to their corresponding aliphatic bands e.g. nC8 would be expected to be in nC8-nC10.
The method was validated through a designated systematic experimental protocol and was challenged with spikes of known concentration of hydrocarbon parameters such as recoveries, precision, bias and linearity. The method was verified by testing a certified reference material which was used as a proficiency round of testing for numerous laboratories.
It is hoped that the method will be used in conjunction with the analysis through Bonn Agreement with their OSINet group. This is a panel of experts and laboratories (including CLS) who forensically identify oil spill contamination from a water source.
This method can prove itself to be a robust method and benefit the industry for contaminated land and water but the method needs to be seen as separate from the regular 1D chromatography. It will help identify contaminants and assist consultants, regulators, clients and scientists valuable information not seen in 1D
Resumo:
The effect of increasing concentrations (65, 130, 325, 1,300, and 3,250 μg/g soil dry weight) of 1,2-dichlorobenzene (1,2-DCB) on the microbial biomass, metabolic potential, and diversity of culturable bacteria was investigated using soil microcosms. All doses caused a significant (p < 0.05) decrease in viable hyphal fungal length. Bacteria were more tolerant, only direct total counts in soils exposed to 3,250 μg/g were significantly (p < 0.05) lower than untreated controls, and estimates of culturable bacteria showed no response. Pseudomonads counts were stimulated by 1,2-DCB concentrations of up to 325 μg/g; above this level counts were similar to controls. Fatty acid methyl ester analysis of taxonomic bacterial composition reflected the differential response of specific genera to increasing 1,2-DCB concentrations, especially the tolerance of Bacillus to the highest concentrations. The shifts in community composition were reflected in estimates of metabolic potential assessed by carbon assimilation (Biolog) ability. Significantly fewer (p < 0.05) carbon sources were utilized by communities exposed to 1,2-DCB concentrations greater than 130 μg/g (<64 carbon sources utilized) than control soils (83); the ability to assimilate individual carbohydrates sources was especially compromised. The results of this study demonstrate that community diversity and metabolic potential can be used as effective bioindicators of pollution stress and concentration effects.
Resumo:
The effect of 100 μg 1,2-dichlorobenzene (1,2-DCB) g-1 dry weight (dw) of soil introduced either as a single dose or multiple (10 fortnightly) doses of 10 μg g-1 dw, on the microbial biomass, diversity of culturable bacterial community and the rate of 1,2-DCB mineralisation, were compared. After 22 weeks exposure both application regimes significantly reduced total bacterial counts and viable fungal hyphal length. The single dose had the greatest overall inhibitory effect, although the extent of inhibition varied throughout the study. Total culturable bacterial counts, determined after 22 weeks exposure showed little response to 1,2-DCB, but pseudomonad counts in single and multiple treatments were reduced to 9.7 and 0.147%, respectively, of the numbers detected in the control soil. The effect of 1,2-DCB application on the taxonomic composition of the culturable bacteria community was determined by fatty acid methyl ester (FAME) analysis. Compared to control soils, the single dose treatment had a lower percentage of Arthrobacter and Micrococcus. Multiple applications had a significant effect upon pseudomonad abundance, which represented only 2% of the identified community, compared to 45.6% in the control. The multi-dosed soils contained a high percentage of bacilli (> 25%). The effects of 1,2-DCB applications on the metabolic potential of the soil microbial community was determined by BIOLOG profiling. The number of carbon compounds utilised by the community in the multi-dosed soils (49 positives) was significantly less (P < 0.05) than detected in the single dose treatment (76) and control (66). The rate of 1,2-DCB mineralisation, determined by 14CO2 production from radiolabelled [UL-14C] 1,2-DCB, declined throughout the study, and after 22 weeks was slightly but significantly (P < 0.05) lower in the multiply- than the singly-dosed soils. The differential response to 1,2-DCB treatments was attributed to its reduced bioavailability in soils after a single exposure, compared to multiple applications.
Resumo:
Velvetgrass (Holcus lanatus L.), also known as Yorkshire fog grass, has evolved tolerance to high levels of arsenate, and this adaptation involves reduced accumulation of arsenate through the suppression of the high affinity phosphate-arsenate uptake system. To determine the role of P nutrition in arsenate tolerance, inhibition kinetics of arsenate influx by phosphate were determined. The concentration of inhibitor required to reduce maximum influx (V(max)) by 50%, K1, of phosphate inhibition of arsenate influx was 0.02 mol m-3 in both tolerant and nontolerant clones. This was compared with the concentration where influx is 50% of maximum, a K(m), for arsenate influx of 0.6 mol m-3 for tolerants and 0.025 mol m-3 for nontolerants and, therefore, phosphate was much more effective at inhibiting arsenate influx in tolerant genotypes. The high affinity phosphate uptake system is inducible under low plant phosphate status, this increasing plant phosphate status should increase tolerance by decreasing arsenate influx. Root extension in arsenate solutions of tolerant and nontolerant tillers grown under differing phosphate nutritional regimes showed that indeed, increased plant P status increased the tolerance to arsenate of both tolerant and nontolerant clones. That plant P status increased tolerance again argues that P nutrition has a critical role in arsenate tolerance. To determine if short term flux and solution culture studies were relevant to As and P accumulation in soils, soil and plant material from a range of As contaminated sites were analyzed. As predicted from the short-term competition studies, P was accumulated preferentially to As in arsenate tolerant clones growing on mine spoil soils even when acid extractable arsenate in the soils was much greater than acid extractable phosphate. Though phosphate was much more efficient at competing with arsenate for uptake, plants growing on arsenate contaminated land still accumulated considerable amounts of As. Plants from the differing habitats showed large variation in plant phosphate status, pasture plants having much higher P levels than plants growing on the most contaminated mine spoil soils. The selectivity of the phosphate-arsenate uptake system for phosphate compared with arsenate, coupled with the suppression of this uptake system enabled tolerant clones of the grass velvetgrass to grow on soils that were highly contaminated with arsenate and deficient in phosphate.
Resumo:
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.
Resumo:
Single component geochemical maps are the most basic representation of spatial elemental distributions and commonly used in environmental and exploration geochemistry. However, the compositional nature of geochemical data imposes several limitations on how the data should be presented. The problems relate to the constant sum problem (closure), and the inherently multivariate relative information conveyed by compositional data. Well known is, for instance, the tendency of all heavy metals to show lower values in soils with significant contributions of diluting elements (e.g., the quartz dilution effect); or the contrary effect, apparent enrichment in many elements due to removal of potassium during weathering. The validity of classical single component maps is thus investigated, and reasonable alternatives that honour the compositional character of geochemical concentrations are presented. The first recommended such method relies on knowledge-driven log-ratios, chosen to highlight certain geochemical relations or to filter known artefacts (e.g. dilution with SiO2 or volatiles). This is similar to the classical normalisation approach to a single element. The second approach uses the (so called) log-contrasts, that employ suitable statistical methods (such as classification techniques, regression analysis, principal component analysis, clustering of variables, etc.) to extract potentially interesting geochemical summaries. The caution from this work is that if a compositional approach is not used, it becomes difficult to guarantee that any identified pattern, trend or anomaly is not an artefact of the constant sum constraint. In summary the authors recommend a chain of enquiry that involves searching for the appropriate statistical method that can answer the required geological or geochemical question whilst maintaining the integrity of the compositional nature of the data. The required log-ratio transformations should be applied followed by the chosen statistical method. Interpreting the results may require a closer working relationship between statisticians, data analysts and geochemists.
Resumo:
This review paper discusses the use of Tellus and Tellus Border soil and stream geochemistry data to investigate the relationship between medical data and naturally occurring background levels of potentially toxic elements (PTEs) such as heavy metals in soils and water. The research hypothesis is that long-term low level oral exposure of PTEs via soil and water may result in cumulative exposures that may act as risk factors for progressive diseases including cancer and chronic kidney disease. A number of public policy implications for regional human health risk assessments, public health policy and education are also explored alongside the argument for better integration of multiple data sets to enhance ongoing medical and social research. This work presents a partnership between the School of Geography, Archaeology and Palaeoecology, Northern Ireland Cancer Registry, Queen’s University Belfast, and the nephrology (kidney medicine) research group.