994 resultados para RTÉ
Resumo:
Background: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manualannotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results.Results: The GENCODE gene features are divided into eight different categories of which onlythe first two (known and novel coding sequence) are confidently predicted to be protein-codinggenes. 5’ rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentallyverify the initial annotation. Of the 420 coding loci tested, 229 RACE products have beensequenced. They supported 5’ extensions of 30 loci and new splice variants in 50 loci. In addition,46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15putative transcripts. We assessed the comprehensiveness of the GENCODE annotation byattempting to validate all the predicted exon boundaries outside the GENCODE annotation. Outof 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only twoof them in intergenic regions.Conclusions: In total, 487 loci, of which 434 are coding, have been annotated as part of theGENCODE reference set available from the UCSC browser. Comparison of GENCODEannotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained withinthe two sets, which is a reflection of the high number of alternative splice forms with uniqueexons annotated. Over 50% of coding loci have been experimentally verified by 5’ RACE forEGASP and the GENCODE collaboration is continuing to refine its annotation of 1% humangenome with the aid of experimental validation.
Resumo:
Background: Despite the continuous production of genome sequence for a number of organisms,reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularlytrue for genomes for which there is not a large collection of known gene sequences, such as therecently published chicken genome. We used the chicken sequence to test comparative andhomology-based gene-finding methods followed by experimental validation as an effective genomeannotation method.Results: We performed experimental evaluation by RT-PCR of three different computational genefinders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram wascomputed and each component of it was evaluated. The results showed that de novo comparativemethods can identify up to about 700 chicken genes with no previous evidence of expression, andcan correctly extend about 40% of homology-based predictions at the 5' end.Conclusions: De novo comparative gene prediction followed by experimental verification iseffective at enhancing the annotation of the newly sequenced genomes provided by standardhomology-based methods.
Resumo:
PURPOSE: To evaluate the influence of concomitant chemotherapy on loco-regional control (LRC) and cancer-specific survival (CSS) in patients with T1-T2 N0 M0 anal cancer treated conservatively by primary radiotherapy (RT). MATERIALS AND METHODS: Between 1976 and 2008, 146 patients with T1 (n=29) or T2 (n=117) N0 M0 anal cancer were treated curatively by RT alone (n=71) or by combined chemoradiotherapy (CRT) (n=75) consisting of mitomycin C±5-fluorouracil. Univariate and multivariate analyses were performed to assess patient-, tumor- and treatment-related factors influencing LRC and CSS. RESULTS: With a median follow-up of 62.5 months (interquartilerange, 26-113 months), 122 (84%) patients were locally controlled. The five-year actuarial LRC, CSS and overall survival for the population were 81.4%±3.6%, 91.9%±2.6%, and 75.4%±3.9%, respectively. The five-year LRC and CSS for patients treated with RT alone and with CRT were 75.5%±6.0% vs. 86.8%±4.1% (p=0.155) and 88.5%±4.5% vs. 94.9%±2.9% (p=0.161), respectively. In the multivariate analysis, no clinical or therapeutic factors were found to significantly influence the LRC and CSS, while the addition of chemotherapy was of borderline significance (p=0.065 and p=0.107, respectively). CONCLUSIONS: In the management of node negative T1-T2 anal cancer, LRC and CSS tend to be superior in patients treated by combined CRT, even though the difference was not significant. Randomized studies are warranted to assess definitively the role of combined treatment in early-stage anal carcinoma.
Resumo:
Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.
Resumo:
Seizures appear at stroke presentation, during the acute phase or as a late complication of stroke. Thrombolysis has not been investigated as a risk factor despite its potential neurotoxic effect. We try to identify risk factors for seizures during the acute phase of ischemic stroke in a cohort including thrombolysed patients. We undertook a case-control study at a single stroke center using data from Acute Stroke Registry and Analyse of Lausanne (ASTRAL). Patients with seizure occurring during the first 7 days following stroke were retrospectively identified. Bi-variable and multivariable statistical analyses were applied to compare cases and randomly selected controls. We identified 28 patients experiencing from seizures in 2,327 acute ischemic strokes (1.2 %). All seizures occurred during the first 72 h. Cortical involvement, thrombolysis with rt-PA, arterial recanalization, and higher initial NIHSS were statistically associated with seizures in univariated analysis. Backward linear regression identified cortical involvement (OR 7.53, 95 % CI 1.6-35.2, p < 0.01) and thrombolysis (OR 4.6, 95 % CI 1.6-13.4, p = 0.01) as being independently associated with seizure occurrence. Overall, 3-month outcome measured by the modified Rankin scale (mRS) was comparable in both groups. In the subgroup of thrombolysed patients, outcome was significantly worse at 3 months in the seizure group with 9/12 (75 %) patients with mRS ≥3, compared to 6/18 (33.3 %) in the seizure-free group (p = 0.03). Acute seizures in acute ischemic stroke were relatively infrequent. Cortical involvement and thrombolysis with rt-PA are the principal risk factors. Seizures have a potential negative influence on clinical outcome in thrombolysed patients.
Resumo:
The high Km glucose transporter GLUT2 is a membrane protein expressed in tissues involved in maintaining glucose homeostasis, and in cells where glucose-sensing is necessary. In many experimental models of diabetes, GLUT2 gene expression is decreased in pancreatic beta-cells, which could lead to a loss of glucose-induced insulin secretion. In order to identify factors involved in pancreatic beta-cell specific expression of GLUT2, we have recently cloned the murine GLUT2 promoter and identified cis-elements within the 338-bp of the proximal promoter capable of binding islet-specific trans-acting factors. Furthermore, in transient transfection studies, this 338-bp fragment could efficiently drive the expression of the chloramphenicol acetyl transferase (CAT) gene in cell lines derived from the endocrine pancreas, but displayed no promoter activity in non-pancreatic cells. In this report, we tested the cell-specific expression of a CAT reporter gene driven by a short (338 bp) and a larger (1311 bp) fragment of the GLUT2 promoter in transgenic mice. We generated ten transgenic lines that integrated one of the constructs. CAT mRNA expression in transgenic tissues was assessed using the RNAse protection assay and the quantitative reverse transcribed polymerase chain reaction (RT-PCR). Overall CAT mRNA expression for both constructs was low compared to endogenous GLUT2 mRNA levels but the reporter transcript could be detected in all animals in the pancreatic islets and the liver, and in a few transgenic lines in the kidney and the small intestine. The CAT protein was also present in Langerhans islets and in the liver for both constructs by immunocytochemistry. These findings suggest that the proximal 338 bp of the murine GLUT2 promoter contain cis-elements required for the islet-specific expression of GLUT2.
Resumo:
Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.
Resumo:
BACKGROUND: The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. RESULTS: We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. CONCLUSIONS: In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.
Resumo:
Neuroinflammation is observed in many brain pathologies: in neurodegenerative diseases and multiple sclerosis as well as in chemically induced lesions. It is characterized by the reactivity of microglial cells and astrocytes, activation of inducible NO-synthase (i-NOS), and increased expression and/or release of cytokines and chemokines. Clearly, cell-to-cell signaling between the different brain cell types plays an important role in the initiation and propagation of neuroinflammation, but despite the growing list of known molecular actors, the underlying pathways and the sequence of events remain to be fully elucidated. The present chapter presents an example of how to assess neuroinflammation in complex brain tissues, using aggregating brain cell cultures as an in vitro model. This three-dimensional cell culture system provides optimal cell-to-cell interactions crucial for histotypic cellular maturation and control of neuroinflammatory processes. The techniques described here comprise immunocytochemistry to assess the reactivity of microglia and astrocytes and the expression of cytokines; quantitative RT-PCR to measure the mRNA expression of cytokines (TNF-α, IL-1β, IL-6, IL-1ra, TGF-β, IL-15, IFN-γ), chemokines (ccl5, cxcl1, cxcl2), and i-NOS; and immunoblotting to assess MAP kinase pathway activation (phosphorylation of p38 and p44/42 MAP kinases).
Resumo:
STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.
Resumo:
The expected therapeutic gain of a combined radioimmunotherapy (RIT) with conventional radiotherapy (RT) would be a synergy of tumor irradiation, provided that toxic, dose-limiting side effects concern different organs. We have shown in a model of subcutaneous human colon cancer transplants in nude mice that RIT with 131I-labeled anti-CEA antibody fragments combined with fractionated RT give an additive therapeutic effect without increase of side effects. A second study of different timing schedules of RIT and RT has shown that close association of both therapies without delay is more efficient than a therapy with a treatment-free interval of two weeks. In a new model of human colon cancer liver metastases in nude mice, early treatment with RIT and with RT has been curative, whereas therapies initiated later were less efficient, suggesting that the combined therapy is likely to be more efficient in an adjuvant situation after surgery. At the clinical level, six patients with limited liver metastatic disease from colorectal cancer were treated with RIT using 200 mCi 131I-labeled anti-CEA MAb F(ab')2 fragments combined with fractionated external beam RT of 20 Gy to the entire liver. As expected, spontaneously reversible bone marrow toxicity grade 3 to 4 and reversible liver toxicity grade 1 to 3 have been observed. By computerized tomography, three patients showed stable disease and one patient partial remission, whereas two patients had progressive disease. In conclusion, animal experiments have shown a clear advantage of combined RT and RIT, and the clinical study shows the feasibility of such a therapy in patients with colorectal cancer liver metastases.
Resumo:
La Bible s’ouvre par deux compositions poétiques d’Alcuin qui encadrent l’Épître de saint Jérôme à Paulinus, « Frater Ambrosius... » (ff. 1-2r : Monumenta Germaniae Historica, Poetae latinae, I, 1, p. 287, LXVIII-LXX, v. 1-200 ; ff. 4r-v : Monumenta Germaniae Historica, Poetae latinae, I, 1, p. 283-284, LXV, I-III). La fin manque: la Bible s'interrompt à la fin de l'Epître de saint Paul aux Colossiens.
Resumo:
Purpose: We generated genetically engineered pigs expressing the human dominant GUCY2DE837D/R838S allele to modelize cone dystrophy. After a functional follow-up showing reduced photopic ERG responses (ARVO 2011), we analyzed the eyes by immunohistochemistry and revealed retinal modifications in the transgenic group. Methods: Lentiviral vectors encoding the human double mutant GUCY2DE837D/R838S cDNA under the control of a portion of the pig arrestin-3 promoter (Arr3) were produced and used for lentiviral-mediated transgenesis in pigs. Animals were regularly submitted to behavioral and functional investigations and were sacrificed at 4, 7, 15 and 18 months of age for histological and RT-PCR analyses. Retinal markers were used to evaluate the retinal status of eleven transgenic pigs and 6 non-transgenic controls. The expression of the mutant cDNA was also assayed by RT-PCR. Results: A significant increase in the number of displaced nuclei in the outersegment layer is observed in transgenic animals compared to control animals independently of their age. Part of these nuclei originate from cones as demonstrated by colocalization with cone markers. No significant change in the ONL thickness (central and peripheral retina) was measured between 4 and 18 months of age, showing a slow progression of the disease in the transgenic pigs within this time-frame. Conclusions: Arr3-GUCY2DE837D/R838S pigs show signs of retinal abnormality with slow progression which parallels the loss of photopic function. Further characterization of this model should help to elucidate the molecular mechanisms underlying the disease evolution.
Resumo:
Cancer/testis (CT) genes are normally expressed in germ cells only, yet are reactivated and expressed in some tumors. Of the approximately 40 CT genes or gene families identified to date, 20 are on the X chromosome and are present as multigene families, many with highly conserved members. This indicates that novel CT gene families may be identified by detecting duplicated expressed genes on chromosome X. By searching for transcript clusters that map to multiple locations on the chromosome, followed by in silico analysis of their gene expression profiles, we identified five novel gene families with testis-specific expression and >98% sequence identity among family members. The expression of these genes in normal tissues and various tumor cell lines and specimens was evaluated by qualitative and quantitative RT-PCR, and a novel CT gene family with at least 13 copies was identified on Xq24, designated as CT47. mRNA expression of CT47 was found mainly in the testes, with weak expression in the placenta. Brain tissue was the only positive somatic tissue tested, with an estimated CT47 transcript level 0.09% of that found in testis. Among the tumor specimens tested, CT47 expression was found in approximately 15% of lung cancer and esophageal cancer specimens, but not in colorectal cancer or breast cancer. The putative CT47 protein consists of 288 amino acid residues, with a C-terminus rich in alanine and glutamic acid. The only species other than human in which a gene homologous to CT47 has been detected is the chimpanzee, with the predicted protein showing approximately 80% identity in its carboxy terminal region.