863 resultados para REGRESSION MULTINOMIAL ANALYSIS
Resumo:
Federal transportation legislation in effect since 1991 was examined to determine outcomes in two areas: (1) The effect of organizational and fiscal structures on the implementation of multimodal transportation infrastructure, and (2) The effect of multimodal transportation infrastructure on sustainability. Triangulation of methods was employed through qualitative analysis (including key informant interviews, focus groups and case studies), as well as quantitative analysis (including one-sample t-tests, regression analysis and factor analysis). ^ Four hypotheses were directly tested: (1) Regions with consolidated government structures will build more multimodal transportation miles: The results of the qualitative analysis do not lend support while the results of the quantitative findings support this hypothesis, possibly due to differences in the definitions of agencies/jurisdictions between the two methods. (2) Regions in which more locally dedicated or flexed funding is applied to the transportation system will build a greater number of multimodal transportation miles: Both quantitative and qualitative research clearly support this hypothesis. (3) Cooperation and coordination, or, conversely, competition will determine the number of multimodal transportation miles: Participants tended to agree that cooperation, coordination and leadership are imperative to achieving transportation goals and objectives, including targeted multimodal miles, but also stressed the importance of political and financial elements in determining what ultimately will be funded and implemented. (4) The modal outcomes of transportation systems will affect the overall health of a region in terms of sustainability/quality of life indicators: Both the qualitative and the quantitative analyses provide evidence that they do. ^ This study finds that federal legislation has had an effect on the modal outcomes of transportation infrastructure and that there are links between these modal outcomes and the sustainability of a region. It is recommended that agencies further consider consolidation and strengthen cooperation efforts and that fiscal regulations are modified to reflect the problems cited in qualitative analysis. Limitations of this legislation especially include the inability to measure sustainability; several measures are recommended. ^
Resumo:
Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^
Financial aid and the persistence of associate of arts graduates transferring to a senior university
Resumo:
This study examined the effects of financial aid on the persistence of associate of arts graduates transferring to a senior university in one of four consecutive fall semesters (1998-2001). Situated in an international metropolitan area in the southeastern United States, the institution where the study was conducted is a large public research university identified as a Hispanic Serving Institution. Archival databases served as the source of information on the academic and social background of the 4,669 participants in the study. Data from institutional financial aid records were pooled with the data in the student administrative system.^ For purposes of this study, persistence was defined as ongoing progress until completing the baccalaureate degree. Student social background variables used in the study were gender, ethnicity, age, and income, with GPA and part-time or full-time enrollment status being the academic variables. Amount and type of aid, including grants, loans, scholarships, and work study were incorporated in the models to determine the effect of financial aid on the persistence of these transfer students. Because the dependent variable persistence had three possible outcomes (graduated, still enrolled, dropped out) multinomial logistic regression was the appropriate technique for analyzing the data; four multinomial models were employed in the analysis.^ Findings suggest that grants awarded based on the financial need of students and loans were effective in encouraging the persistence of students, but scholarships and work study were not effective.^
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
The purpose of this study was to determine hope’s unique role, if any, in predicting persistence in a developmental writing course. Perceived academic self-efficacy was also included as a variable of interest for comparison because self-efficacy has been more widely studied than hope in terms of its non-cognitive role in predicting academic outcomes. A significant body of research indicates that self-efficacy influences academic motivation to persist and academic performance. Hope, however, is an emerging psychological construct in the study of non-cognitive factors that influence college outcomes and warrants further exploration in higher education. This study examined the predictive value of hope and self-efficacy on persistence in a developmental writing course. The research sample was obtained from a community college in the southeastern United States. Participants were 238 students enrolled in developmental writing courses during their first year of college. Participants were given a questionnaire that included measures for perceived academic self-efficacy and hope. The self-efficacy scale asked participants to self-report on their beliefs about how they cope with different academic tasks in order to be successful. The hope scale asked students to self-report on their beliefs about their capability to initiate action towards a goal (“agency”) and create a plan to attain these goals (“pathways”). This study utilized a correlational research design. A statistical association was estimated between hope and self-efficacy as well as the unique variance contributed by each on course persistence. Correlational analysis confirmed a significant relationship between hope and perceived academic self-efficacy, and a Fisher’s z-transformation confirmed a stronger relationship between the agency component of hope and perceived academic self-efficacy than for the pathways component. A series of multinomial logistic regression analyses were conducted to assess if (a) perceived self-efficacy and hope predict course persistence, (b) hope independent of self-efficacy predicts course persistence, and (c) if including the interaction of perceived self-efficacy and hope predicts course persistence. It was found that hope was only significant independent of self-efficacy. Some implications for future research are drawn for those who lead and coordinate academic support initiatives in student and academic affairs.
Resumo:
The purpose of this study was to better understand the study behaviors and habits of university undergraduate students. It was designed to determine whether undergraduate students could be grouped based on their self-reported study behaviors and if any grouping system could be determined, whether group membership was related to students’ academic achievement. A total of 152 undergraduate students voluntarily participated in the current study by completing the Study Behavior Inventory instrument. All participants were enrolled in fall semester of 2010 at Florida International University. The Q factor analysis technique using principal components extraction and a varimax rotation was used in order to examine the participants in relation to each other and to detect a pattern of intercorrelations among participants based on their self-reported study behaviors. The Q factor analysis yielded a two factor structure representing two distinct student types among participants regarding their study behaviors. The first student type (i.e., Factor 1) describes proactive learners who organize both their study materials and study time well. Type 1 students are labeled “Proactive Learners with Well-Organized Study Behaviors”. The second type (i.e., Factor 2) represents students who are poorly organized as well as being very likely to procrastinate. Type 2 students are labeled Disorganized Procrastinators. Hierarchical linear regression was employed to examine the relationship between student type and academic achievement as measured by current grade point averages (GPAs). The results showed significant differences in GPAs between Type 1 and Type 2 students at the .05 significance level. Furthermore, student type was found to be a significant predictor of academic achievement beyond and above students’ attribute variables including sex, age, major, and enrollment status. The study has several implications for educational researchers, practitioners, and policy makers in terms of improving college students' learning behaviors and outcomes.
Resumo:
This dissertation examines local governments' efforts to promote economic development in Latin America. The research uses a mixed method to explore how cities make decisions to innovate, develop, and finance economic development programs. First, this study provides a comparative analysis of decentralization policies in Argentina and Mexico as a means to gain a better understanding of the degree of autonomy exercised by local governments. Then, it analyzes three local governments each within the province of Santa Fe, Argentina and the State of Guanajuato, Mexico. The principal hypothesis of this dissertation is that if local governments collect more own-source tax revenue, they are more likely to promote economic development and thus, in turn, promote growth for their region. ^ By examining six cities, three of which are in Santa Fe—Rosario, Santa Fe (capital) and Rafaela—and three in Guanajuato—Leon, Guanajuato (capital) and San Miguel de Allende, this dissertation provides a better understanding of public finances and tax collection efforts of local governments in Latin America. Specific attention is paid to each city's budget authority to raise new revenue and efforts to promote economic development. The research also includes a large statistical dataset of Mexico's 2,454 municipalities and a regression analysis that evaluates local tax efforts on economic growth, controlling for population, territorial size, and the professional development. In order to generalize these results, the research tests these discoveries by using statistical data gathered from a survey administered to Latin American municipal officials. ^ The dissertation demonstrates that cities, which experience greater fiscal autonomy measured by the collection of more own-source revenue, are better able to stimulate effective economic development programs, and ultimately, create jobs within their communities. The results are bolstered by a large number of interviews, which were conducted with over 100 finance specialists, municipal presidents, and local authorities. The dissertation also includes an in-depth literature review on fiscal federalism, decentralization, debt financing and local development. It concludes with a discussion of the findings of the study and applications for the practice of public administration.^
Resumo:
In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.
Resumo:
Multiple linear regression model plays a key role in statistical inference and it has extensive applications in business, environmental, physical and social sciences. Multicollinearity has been a considerable problem in multiple regression analysis. When the regressor variables are multicollinear, it becomes difficult to make precise statistical inferences about the regression coefficients. There are some statistical methods that can be used, which are discussed in this thesis are ridge regression, Liu, two parameter biased and LASSO estimators. Firstly, an analytical comparison on the basis of risk was made among ridge, Liu and LASSO estimators under orthonormal regression model. I found that LASSO dominates least squares, ridge and Liu estimators over a significant portion of the parameter space for large dimension. Secondly, a simulation study was conducted to compare performance of ridge, Liu and two parameter biased estimator by their mean squared error criterion. I found that two parameter biased estimator performs better than its corresponding ridge regression estimator. Overall, Liu estimator performs better than both ridge and two parameter biased estimator.
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems – stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
Public school choice education policy attempts to create an education marketplace. Although school choice research has focused on the parent role in the school choice process, little is known about parents served by low-performing schools. Following market theory, students attending low-performing schools should be the primary students attempting to use school choice policy to access high performing schools rather than moving to a better school. However, students remain in these low-performing schools. This study took place in Miami-Dade County, which offers a wide variety of school choice options through charter schools, magnet schools, and open-choice schools. ^ This dissertation utilized a mixed-methods design to examine the decision-making process and school choice options utilized by the parents of students served by low-performing elementary schools in Miami-Dade County. Twenty-two semi-structured interviews were conducted with the parents of students served by low-performing schools. Binary logistic regression models were fitted to the data to compare the demographic characteristics, academic achievement and distance from alternative schooling options between transfers and non-transfers. Multinomial logistic regression models were fitted to the data to evaluate how demographic characteristics, distance to transfer school, and transfer school grade influenced the type of school a transfer student chose. A geographic analysis was conducted to determine how many miles students lived from alternative schooling options and the miles transfer students lived away from their transfer school. ^ The findings of the interview data illustrated that parents’ perceived needs are not being adequately addressed by state policy and county programs. The statistical analysis found that students from higher socioeconomic social groups were not more likely to transfer than students from lower socioeconomic social groups. Additionally, students who did transfer were not likely to end up at a high achieving school. The findings of the binary logistic regression demonstrated that transfer students were significantly more likely to live near alternative school options.^
Resumo:
The purpose of this study was to determine hope’s unique role, if any, in predicting persistence in a developmental writing course. Perceived academic self-efficacy was also included as a variable of interest for comparison because self-efficacy has been more widely studied than hope in terms of its non-cognitive role in predicting academic outcomes. A significant body of research indicates that self-efficacy influences academic motivation to persist and academic performance. Hope, however, is an emerging psychological construct in the study of non-cognitive factors that influence college outcomes and warrants further exploration in higher education. This study examined the predictive value of hope and self-efficacy on persistence in a developmental writing course. The research sample was obtained from a community college in the southeastern United States. Participants were 238 students enrolled in developmental writing courses during their first year of college. Participants were given a questionnaire that included measures for perceived academic self-efficacy and hope. The self-efficacy scale asked participants to self-report on their beliefs about how they cope with different academic tasks in order to be successful. The hope scale asked students to self-report on their beliefs about their capability to initiate action towards a goal (“agency”) and create a plan to attain these goals (“pathways”). This study utilized a correlational research design. A statistical association was estimated between hope and self-efficacy as well as the unique variance contributed by each on course persistence. Correlational analysis confirmed a significant relationship between hope and perceived academic self-efficacy, and a Fisher’s z-transformation confirmed a stronger relationship between the agency component of hope and perceived academic self-efficacy than for the pathways component. A series of multinomial logistic regression analyses were conducted to assess if (a) perceived self-efficacy and hope predict course persistence, (b) hope independent of self-efficacy predicts course persistence, and (c) if including the interaction of perceived self-efficacy and hope predicts course persistence. It was found that hope was only significant independent of self-efficacy. Some implications for future research are drawn for those who lead and coordinate academic support initiatives in student and academic affairs.
Resumo:
Disasters are complex events characterized by damage to key infrastructure and population displacements into disaster shelters. Assessing the living environment in shelters during disasters is a crucial health security concern. Until now, jurisdictional knowledge and preparedness on those assessment methods, or deficiencies found in shelters is limited. A cross-sectional survey (STUSA survey) ascertained knowledge and preparedness for those assessments in all 50 states, DC, and 5 US territories. Descriptive analysis of overall knowledge and preparedness was performed. Fisher’s exact statistics analyzed differences between two groups: jurisdiction type and population size. Two logistic regression models analyzed earthquakes and hurricane risks as predictors of knowledge and preparedness. A convenience sample of state shelter assessments records (n=116) was analyzed to describe environmental health deficiencies found during selected events. Overall, 55 (98%) of jurisdictions responded (states and territories) and appeared to be knowledgeable of these assessments (states 92%, territories 100%, p = 1.000), and engaged in disaster planning with shelter partners (states 96%, territories 83%, p = 0.564). Few had shelter assessment procedures (states 53%, territories 50%, p = 1.000); or training in disaster shelter assessments (states 41%, 60% territories, p = 0.638). Knowledge or preparedness was not predicted by disaster risks, population size, and jurisdiction type in neither model. Knowledge: hurricane (Adjusted OR 0.69, 95% C.I. 0.06-7.88); earthquake (OR 0.82, 95% C.I. 0.17-4.06); and both risks (OR 1.44, 95% C.I. 0.24-8.63); preparedness model: hurricane (OR 1.91, 95% C.I. 0.06-20.69); earthquake (OR 0.47, 95% C.I. 0.7-3.17); and both risks (OR 0.50, 95% C.I. 0.06-3.94). Environmental health deficiencies documented in shelter assessments occurred mostly in: sanitation (30%); facility (17%); food (15%); and sleeping areas (12%); and during ice storms and tornadoes. More research is needed in the area of environmental health assessments of disaster shelters, particularly, in those areas that may provide better insight into the living environment of all shelter occupants and potential effects in disaster morbidity and mortality. Also, to evaluate the effectiveness and usefulness of these assessments methods and the data available on environmental health deficiencies in risk management to protect those at greater risk in shelter facilities during disasters.
Resumo:
Classification procedures, including atmospheric correction satellite images as well as classification performance utilizing calibration and validation at different levels, have been investigated in the context of a coarse land-cover classification scheme for the Pachitea Basin. Two different correction methods were tested against no correction in terms of reflectance correction towards a common response for pseudo-invariant features (PIF). The accuracy of classifications derived from each of the three methods was then assessed in a discriminant analysis using crossvalidation at pixel, polygon, region, and image levels. Results indicate that only regression adjusted images using PIFs show no significant difference between images in any of the bands. A comparison of classifications at different levels suggests though that at pixel, polygon, and region levels the accuracy of the classifications do not significantly differ between corrected and uncorrected images. Spatial patterns of land-cover were analyzed in terms of colonization history, infrastructure, suitability of the land, and landownership. The actual use of the land is driven mainly by the ability to access the land and markets as is obvious in the distribution of land cover as a function of distance to rivers and roads. When considering all rivers and roads a threshold distance at which disproportional agro-pastoral land cover switches from over represented to under represented is at about 1km. Best land use suggestions seem not to affect the choice of land use. Differences in abundance of land cover between watersheds are more prevailing than differences between colonist and indigenous groups.
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.