956 resultados para Récepteur de cytokine
Resumo:
TGF-ß1 is a prototypic profibrotic cytokine and major driver of fibrosis in the kidney and other organs. Induced in high glucose-1 (IHG-1) is a mitochondrial protein which we have recently reported to be associated with renal disease. IHG-1 amplifies responses to TGF-ß1 and regulates mitochondrial biogenesis by stabilising the transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator-1-alpha. Here we report that the mitochondrial localization of IHG-1 is pivotal in amplification of TGF-ß1 signaling. We demonstrate that IHG-1 expression is associated with repression of the endogenous TGF-ß1 inhibitor Smad7. Intriguingly, expression of a non-mitochondrial deletion mutant of IHG-1 (?mts-IHG-1) repressed TGF-ß1 fibrotic signaling in renal epithelial cells. In cells expressing ?mts-IHG-1 fibrotic responses including CCN2/connective tissue growth factor, fibronectin and jagged-1 expression were reduced following stimulation with TGF-ß1. ?mts-IHG-1 modulation of TGF-ß1 signaling was associated with increased Smad7 protein expression. ?mts-IHG-1 modulated TGF-ß1 activity by increasing Smad7 protein expression as it failed to inhibit TGF-ß1 transcriptional responses when endogenous Smad7 expression was knocked down. These data indicate that mitochondria modulate TGF-ß1 signal transduction and that IHG-1 is a key player in this modulation.
Resumo:
Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1ß, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2~3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10~30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b macrophages; however, the increment levels were significantly lower than CFB and C3 genes. M1 and M2b macrophage supernatants enhanced CFB (Bb fragment) protein expression and C3 secretion by RPE cells. M1 macrophages may affect complement expression in RPE cells through the STAT1 pathway. Our results suggest that under inflammatory conditions, activated macrophages could promote the alternative pathway of complement activation in the retina via induction of RPE cell CFB and C3 expression.
Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response
Resumo:
Multiple sclerosis is considered a disease of complex autoimmune etiology, yet there remains a lack of consensus as to specific immune effector mechanisms. Recent analyses of experimental autoimmune encephalomyelitis, the common mouse model of multiple sclerosis, have investigated the relative contribution of Th1 and Th17 CD4 T cell subsets to initial autoimmune central nervous system (CNS) damage. However, inherent in these studies are biases influenced by the adjuvant and toxin needed to break self-tolerance. We investigated spontaneous CNS disease in a clinically relevant, humanized, T cell receptor transgenic mouse model. Mice develop spontaneous, ascending paralysis, allowing unbiased characterization of T cell immunity in an HLA-DR15-restricted T cell repertoire. Analysis of naturally progressing disease shows that IFN?(+) cells dominate disease initiation with IL-17(+) cells apparent in affected tissue only once disease is established. Tregs accumulate in the CNS but are ultimately ineffective at halting disease progression. However, ablation of Tregs causes profound acceleration of disease, with uncontrolled infiltration of lymphocytes into the CNS. This synchronous, severe disease allows characterization of the responses that are deregulated in exacerbated disease: the correlation is with increased CNS CD4 and CD8 IFN? responses. Recovery of the ablated Treg population halts ongoing disease progression and Tregs extracted from the central nervous system at peak disease are functionally competent to regulate myelin specific T cell responses. Thus, in a clinically relevant mouse model of MS, initial disease is IFN? driven and the enhanced central nervous system responses unleashed through Treg ablation comprise IFN? cytokine production by CD4 and CD8 cells, but not IL-17 responses.
Resumo:
Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.
Resumo:
Malignant pleural mesothelioma (MPM) is a highly pro-inflammatory malignancy that is rapidly fatal and increasing in incidence. Cytokine signaling within the pro-inflammatory tumor microenvironment makes a critical contribution to the development of MPM and its resistance to conventional chemotherapy approaches. SMAC mimetic compounds (SMCs) are a promising class of anticancer drug that are dependent on tumor necrosis factor alpha (TNFa) signaling for their activity. As circulating TNFa expression is significantly elevated in MPM patients, we examined the sensitivity of MPM cell line models to SMCs. Surprisingly, all MPM cell lines assessed were highly resistant to SMCs either alone or when incubated in the presence of clinically relevant levels of TNFa. Further analyses revealed that MPM cells were sensitized to SMC-induced apoptosis by siRNA-mediated downregulation of the caspase 8 inhibitor FLIP, an antiapoptotic protein overexpressed in several cancer types including MPM. We have previously reported that FLIP expression is potently downregulated in MPM cells in response to the histone deacetylase inhibitor (HDACi) Vorinostat (SAHA). In this study, we demonstrate that SAHA sensitizes MPM cells to SMCs in a manner dependent on its ability to downregulate FLIP. Although treatment with SMC in the presence of TNFa promoted interaction between caspase 8 and the necrosis-promoting RIPK1, the cell death induced by combined treatment with SAHA and SMC was apoptotic and mediated by caspase 8. These results indicate that FLIP is a major inhibitor of SMC-mediated apoptosis in MPM, but that this inhibition can be overcome by the HDACi SAHA. © 2013 Macmillan Publishers Limited All rights reserved.
Resumo:
Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.
Resumo:
Interleukin-17A, the prototypical member of the interleukin-17 cytokine family, coordinates local tissue inflammation by recruiting neutrophils to sites of infection. Dysregulation of interleukin-17 signalling has been linked to the pathogenesis of inflammatory diseases and autoimmunity. The interleukin-17 receptor family members (A-E) have a broad range of functional effects in immune signalling yet no known role has been described for the remaining orphan receptor, interleukin-17 receptor D, in regulating interleukin-17A-induced signalling pathways. Here we demonstrate that interleukin-17 receptor D can differentially regulate the various pathways employed by interleukin-17A. Neutrophil recruitment, in response to in vivo administration of interleukin-17A, is abolished in interleukin-17 receptor D-deficient mice, correlating with reduced interleukin-17A-induced activation of p38 mitogen-activated protein kinase and expression of the neutrophil chemokine MIP-2. In contrast, interleukin-17 receptor D deficiency results in enhanced interleukin-17A-induced activation of nuclear factor-kappa B and interleukin-6 and keratinocyte chemoattractant expression. Interleukin-17 receptor D disrupts the interaction of Act1 and TRAF6 causing differential regulation of nuclear factor-kappa B and p38 mitogen-activated protein kinase signalling pathways. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Introduction: Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface cultures.
Methods: Paired nasal and bronchial epithelial cells from asthmatic children (n = 9) were differentiated for 28 days under unstimulated and IL-13-stimulated conditions. Morphological and physiological markers were analysed using immunocytochemistry, transepithelial-electrical-resistance, Quantitative Real-time-PCR, ELISA and multiplex cytokine/chemokine analysis.
Results: Physiologically, nasal epithelial cells from asthmatic children exhibit similar cytokine responses to stimulation with IL-13 compared with paired bronchial epithelial cells. Morphologically however, nasal epithelial cells differed significantly from bronchial epithelial cells from asthmatic patients under unstimulated and IL-13-stimulated conditions. Nasal epithelial cells exhibited lower proliferation/differentiation rates and lower percentages of goblet and ciliated cells when unstimulated, while exhibiting a diminished and varied response to IL-13.
Conclusions: We conclude that morphologically, nasal epithelial cells would not be a suitable surrogate due to a significantly lower rate of proliferation and differentiation of goblet and ciliated cells. Physiologically, nasal epithelial cells respond similarly to exogenous stimulation with IL-13 in cytokine production and could be used as a physiological surrogate in the event that bronchial epithelial cells are not available.
Resumo:
Recently it has been shown that levels of circulating oxidized LDL immune complexes (ox-LDL-IC) predict the development of diabetic retinopathy (DR). This study aimed to investigate whether ox-LDL-IC are actually present in the diabetic retina, and to define their effects on human retinal pericytes vs. ox-LDL. In retinal sections from people with type 2 diabetes, co-staining for ox-LDL and IgG was present, proportionate to DR severity, and detectable even in the absence of clinical DR. In contrast, no such staining was observed in retinas from non-diabetic subjects. In vitro, human retinal pericytes were treated with native (N-) LDL, ox-LDL, and ox-LDL-IC (0-200 mg protein/l), and measures of viability, receptor expression, apoptosis, ER and oxidative stresses, and cytokine secretion were evaluated. Ox-LDL-IC exhibited greater cytotoxicity than ox-LDL towards retinal pericytes. Acting through the scavenger (CD36) and IgG (CD64) receptors, low concentrations of ox-LDL-IC triggered apoptosis mediated by oxidative and ER stresses, and enhanced inflammatory cytokine secretion. The data suggest that IC formation in the diabetic retina enhances the injurious effects of ox-LDL. These findings offer new insights into pathogenic mechanisms of DR, and may lead to new preventive measures and treatments.
Resumo:
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
Resumo:
Rationale: Increasing epithelial repair and regeneration may hasten resolution of lung injury in patients with the Acute Respiratory Distress Syndrome (ARDS). In animal models of ARDS, Keratinocyte Growth Factor (KGF) reduces injury and increases epithelial proliferation and repair. The effect of KGF in the human alveolus is unknown.
Objectives: To test whether KGF can attenuate alveolar injury in a human model of ARDS.
Methods: Volunteers were randomized to intravenous KGF (60 μg/kg) or placebo for 3 days, before inhaling 50μg lipopolysaccharide. Six hours later, subjects underwent bronchoalveolar lavage (BAL) to quantify markers of alveolar inflammation and cell-specific injury.
Measurements and Main Results: KGF did not alter leukocyte infiltration or markers of permeability in response to LPS. KGF increased BAL concentrations of Surfactant Protein D (SP-D), MMP-9, IL-1Ra, GM-CSF and CRP. In vitro, BAL fluid from KGF-treated subjects (KGF BAL) inhibited pulmonary fibroblast proliferation, but increased alveolar epithelial proliferation. Active MMP-9 increased alveolar epithelial wound repair. Finally, BAL from the KGF pre-treated group enhanced macrophage phagocytic uptake of apoptotic epithelial cells and bacteria compared with BAL from the placebo-treated group. This effect was blocked by inhibiting activation of the GM-CSF receptor.
Conclusions: KGF treatment increases BAL SP-D, a marker of type II alveolar epithelial cell proliferation in a human model of ALI. Additionally KGF increases alveolar concentrations of the anti-inflammatory cytokine IL-1Ra, and mediators that drive epithelial repair (MMP-9) and enhance macrophage clearance of dead cells and bacteria (GM-CSF).
Resumo:
Purpose:The Signal Transducer and Activator of Transcription 3 (STAT3) pathway is known to play an important role in inflammation and angiogenesis. STAT3 can be activated by IL-6 family cytokines through the receptor IL-6R/gp130. Increased IL-6 has been detected in the plasma and vitreous in neovascular age-related macular degeneration (nAMD) patients. The aim of this study was to investigate the role of the STAT3 pathway in the pathogenesis of nAMD.
Methods:Blood cells from nAMD patients (n = 11) and age-, gender-matched healthy controls (n = 13) were stimulated with IL-6 for 20 minutes. The expression of the activated form of STAT3 (p-STAT3) was examined by flow cytometry. The mRNA levels of gp130, IL-6R and the suppressor of cytokine signalling 3 (SOCS3, a negative regulator of p-STAT3) were evaluated by real-time RT-PCR. Laser-induced choroidal neovascularisation (CNV) was performed in WT C57BL/6J mice as well as in the myeloid cell specific SOCS3 deficiency mice i.e., the LysMCre-SOCS3fl/fl mice. STAT3 activation in CNV lesions was examined by western blot. The size of CNV at different times after laser treatment was measured by confocal microscopy of RPE/choroidal flatmounts.
Results:The expression of p-STAT3 in CD11b+ monocytes was significantly increased in nAMD patients compared to healthy controls, although mRNA expression of gp130, IL-6R and SOCS3 did not differ between patients and controls. The expression of p-STAT3 in the retinal and RPE/choroidal tissues was increased at 1 and 3 days after laser treatment. The administration of a STAT3 inhibitor LLL12 significantly suppressed CNV. CD11b+ monocytes from LysMCre-SOCS3fl/fl mice expressed higher levels of p-STAT3 compared to the cells from WT mice. Laser induced CNV developed earlier and were larger in LysMCre-SOCS3fl/fl mice compared to WT C57BL/6J mice.
Conclusions:Our results suggest that STAT3 activation in circulating monocytes may contribute to the development of choroidal neovascularisation in AMD, and targeting the STAT3 pathway may have therapeutic potential in nAMD.
Resumo:
Stem and progenitor cells have generated considerable scientific and commercial interest in recent years due to their potential for novel cell therapy for a variety of medical conditions. A highly active research area in the field of regenerative medicine is vascular biology. Blood vessel repair and angiogenesis are key processes with endothelial progenitor cells (EPCs) playing a central role. Clinical trials for ischemic conditions, such as myocardial infarction and peripheral arterial disease, have suggested cell therapies to be feasible, safe, and potentially beneficial. Development of efficient methodologies to deliver EPC-based cytotherapies offers new hope for millions of patients with ischemic conditions. Evidence indicates that EPCs, depending on the subtype, mediate angiogenesis through different mechanisms. Differentiation into endothelium and complete integration into damaged vasculature was the first EPC mechanism to be proposed. However, many studies have demonstrated that vasoregulatory paracrine factor secretion by transplanted cells is also important. Many EPC subsets enhance angiogenesis and promote tissue repair by cytokine release without incorporating into the damaged vasculature. Whatever the mechanism, vascular repair and therapeutic angiogenesis using EPCs represent a realistic treatment option and also provides many commercialization opportunities. This review discusses recent advances in the EPC field whilst recounting relevant patents.
Resumo:
Efficient formation of early GCs depends on the close interaction between GC B cells and antigen-primed CD4+ follicular helper T cells (TFH). A tight and stable formation of TFH/B cell conjugates is required for cytokine-driven immunoglobulin class switching and somatic hypermutation of GC B cells. Recently, it has been shown that the formation of TFH/B cell conjugates is crucial for B-cell differentiation and class switch following infection with Leishmania major parasites. However, the subtype of DCs responsible for TFH-cell priming against dermal antigens is thus far unknown. Utilizing a transgenic C57BL/6 mouse model designed to trigger the ablation of Langerin+ DC subsets in vivo, we show that the functionality of TFH/B cell conjugates is disturbed after depletion of Langerhans cells (LCs): LC-depleted mice show a reduction in somatic hypermutation in B cells isolated from TFH/B cell conjugates and markedly reduced GC reactions within skin-draining lymph nodes. In conclusion, this study reveals an indispensable role for LCs in promoting GC B-cell differentiation following cutaneous infection with Leishmania major parasites. We propose that LCs are key regulators of GC formation and therefore have broader implications for the development of allergies and autoimmunity as well as for future vaccination strategies.
Resumo:
Macrophage inhibitory cytokine-1 (MIC-1) is a multifunctional cytokine produced in high amounts by placental tissue. Inhibiting trophoblast invasion and suppressing inflammation through inhibition of macrophage activation, MIC-1 is thought to provide pleiotropic functions in the establishment and maintenance of pregnancy. So far, little is known about the decidual cell subsets producing MIC-1 and the effect of this cytokine on dendritic cells (DCs), which are known to play a distinct role in the development of pro-fetal tolerance in pregnancy.