970 resultados para Queen, attendants, halo
Resumo:
Polistes dominulus is one of the most common social wasps in Europe and is an invasive species in the United States. Its wide prevalence has made it one of the best-studied social wasps. In most social wasps, the female wasps live in a colony and organize themselves into a behavioral dominance hierarchy such that only the dominant alpha individual (the queen) reproduces while the rest function as apparently altruistic, sterile subordinates (workers), building the nest, foraging for food and pulp, and feeding and caring for the brood. Why should workers invest their time and energy helping to rear the queen's brood, rather than found their own nests and rear their own brood—something they are quite capable of? On page 874 of this issue, Leadbeater et al. (1) show that the subordinates indeed produce their own offspring and this raises interesting questions about the links between altruism, direct reproduction, and the evolution of social behavior.
Resumo:
In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.
Resumo:
In our work we have used the atomic hydrogen [HΙ] gas distribution in the HΙ 21-cm line emission to study the dark matter halo perturbations. For tHΙs analysis, the 2-D HΙ surface density and velocity maps (arcHΙval) of the galaxies in the Eridanus group (obtained using the GMRT) and in the Ursa Major group (obtained from WSRT) were used. In addition a few HΙckson Compact Groups of galaxies were also studied using the GMRT. The HΙ maps of these galaxies were Fourier analysed to estimate the asymmetry in the distribution and motion of gas. The average asymmetry parameter in the 1.5 to 2.5 K′-band scale lengths was found to be ~ 0.27 for the Eridanus group of galaxies wHΙle it was ~ 0.14 for the Ursa Major group of galaxies. The asymmetries in the distribution of HΙ as a function of Hubble type of galaxies were also studied and was found to be directly correlated with the compactness of the groups. In addition, the trend in the asymmetry as a function of the Hubble type of galaxies was opposite to that seen in the field galaxies, i.e., in the group galaxies, the early type galaxies showed more asymmetry than late type. These two aspects indicated that tidal interactions between the galaxies in a group environment to be the major cause of asymmetries. The observed asymmetry parameters were consistent with recent numerical simulations of asymmetries of gas disk caused by fly-by interactions. We have also estimated the perturbation of dark matter halo using the asymmetry parameter obtained from the Fourier series analysis of the surface density maps.
Resumo:
Queens of the primitively eusocial wasp Ropalidia marginata are behaviourally docile and maintain their reproductive monopoly by rubbing their abdomen and applying a pheromone to the nest surface. We argued that the queen should be overthrown if she is prevented from applying her pheromone. To test this prediction we introduced the queen and her workers into a cage without the nest, thereby removing the substrate for pheromone application. Contrary to our expectation, queens maintained their status (in six out of seven experiments), by continuing to rub their abdomens (and presumably applying pheromone) to cage walls even in absence of the nest. Such attempts to apply pheromone to the cage are expected to be relatively inefficient as the surface area would be very large. Thus we found that the queens were aggressively challenged by the workers and they in turn reciprocated with aggression toward their workers. Such aggressive queen-worker interactions are almost nonexistent in natural colonies and were also not recorded in the control experiments (with nests present). Our results reinforce the idea that pheromone helps R. marginata queens maintain their status and more importantly, they also show that, if necessary, queens can also supplement the pheromone with physical aggression.
Resumo:
We present global multidimensional numerical simulations of the plasma that pervades the dark matter haloes of clusters, groups and massive galaxies (the intracluster medium; ICM). Observations of clusters and groups imply that such haloes are roughly in global thermal equilibrium, with heating balancing cooling when averaged over sufficiently long time- and length-scales; the ICM is, however, very likely to be locally thermally unstable. Using simple observationally motivated heating prescriptions, we show that local thermal instability (TI) can produce a multiphase medium with similar to 104 K cold filaments condensing out of the hot ICM only when the ratio of the TI time-scale in the hot plasma (tTI) to the free-fall time-scale (tff) satisfies tTI/tff? 10. This criterion quantitatively explains why cold gas and star formation are preferentially observed in low-entropy clusters and groups. In addition, the interplay among heating, cooling and TI reduces the net cooling rate and the mass accretion rate at small radii by factors of similar to 100 relative to cooling-flow models. This dramatic reduction is in line with observations. The feedback efficiency required to prevent a cooling flow is similar to 10-3 for clusters and decreases for lower mass haloes; supernova heating may be energetically sufficient to balance cooling in galactic haloes. We further argue that the ICM self-adjusts so that tTI/tff? 10 at all radii. When this criterion is not satisfied, cold filaments condense out of the hot phase and reduce the density of the ICM. These cold filaments can power the black hole and/or stellar feedback required for global thermal balance, which drives tTI/tff? 10. In comparison to clusters, groups have central cores with lower densities and larger radii. This can account for the deviations from self-similarity in the X-ray luminositytemperature () relation. The high-velocity clouds observed in the Galactic halo can be due to local TI producing multiphase gas close to the virial radius if the density of the hot plasma in the Galactic halo is >rsim 10-5 cm-3 at large radii.
Resumo:
The impact of gate-to-source/drain overlap length on performance and variability of 65 nm CMOS is presented. The device and circuit variability is investigated as a function of three significant process parameters, namely gate length, gate oxide thickness, and halo dose. The comparison is made with three different values of gate-to-source/drain overlap length namely 5 nm, 0 nm, and -5 nm and at two different leakage currents of 10 nA and 100 nA. The Worst-Case-Analysis approach is used to study the inverter delay fluctuations at the process corners. The drive current of the device for device robustness and stage delay of an inverter for circuit robustness are taken as performance metrics. The design trade-off between performance and variability is demonstrated both at the device level and circuit level. It is shown that larger overlap length leads to better performance, while smaller overlap length results in better variability. Performance trades with variability as overlap length is varied. An optimal value of overlap length of 0 nm is recommended at 65 nm gate length, for a reasonable combination of performance and variability.
Resumo:
Ropalidia marginata is a primitively eusocial paper wasp found in peninsular India, where recent work suggests the role of the Dufour's gland hydrocarbons in queen signaling. It appears that the queen signals her presence to workers by rubbing the tip of her abdomen on the nest surface, thereby presumably applying her Dufour's gland secretion to the nest. Since the queen alone produces pheromone from the Dufour's gland and also applies it on the nest surface, the activity level of queen gland should be higher than that of worker gland, as the gland contents would have to get replenished periodically for queens but not for workers. The difference in activity level can be manifested in difference in Dufour's gland morphology, larger glands implying higher activity levels and smaller glands implying lower activity levels, as positive correlation between gland size and gland activity has been reported in exocrine glands of various taxa (including Hymenopteran insects). Hence we investigated whether there is any size difference between Dufour's glands of queens and workers in R. marginata. We found that there was no difference between queens and workers in their Dufour's gland size, implying that Dufour's gland activity and Dufour's gland size are likely to be uncorrelated in this species.
Resumo:
Colonies of the primitively eusocial wasp Ropalidia marginata consist of a single egg layer (queen) and a number of non-egg-laying workers. Although the queen is a docile individual, not at the top of the behavioral dominance hierarchy of the colony, she maintains complete reproductive monopoly. If the queen is lost or removed, one and only one of the workers potential queen (PQ)] becomes hyperaggressive and will become the next queen of the colony. The PQ is almost never challenged because she first becomes hyperaggressive and then gradually loses her aggression, develops her ovaries, and starts laying eggs. Although we are unable to identify the PQ when the queen is present, she appears to be a ``cryptic heir designate.'' Here, we show that there is not just one heir designate but a long reproductive queue and that PQs take over the role of egg-laying, successively, without overt conflict, as the queen or previous PQs are removed. The dominance rank of an individual is not a significant predictor of its position in the succession hierarchy. The age of an individual is a significant predictor, but it is not a perfect predictor because PQs often bypass older individuals to become successors. We suggest that such a predesignated reproductive queue that is implemented without overt conflict is adaptive in the tropics, where conspecific usurpers from outside the colony, which can take advantage of the anarchy prevailing in a queenless colony and invade it, are likely to be present throughout the year.
Resumo:
With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Accurate supersymmetric spectra are required to confront data from direct and indirect searches of supersymmetry. SuSeFLAV is a numerical tool capable of computing supersymmetric spectra precisely for various supersymmetric breaking scenarios applicable even in the presence of flavor violation. The program solves MSSM RGEs with complete 3 x 3 flavor mixing at 2-loop level and one loop finite threshold corrections to all MSSM parameters by incorporating radiative electroweak symmetry breaking conditions. The program also incorporates the Type-I seesaw mechanism with three massive right handed neutrinos at user defined mass scales and mixing. It also computes branching ratios of flavor violating processes such as l(j) -> l(i)gamma, l(j) -> 3 l(i), b -> s gamma and supersymmetric contributions to flavor conserving quantities such as (g(mu) - 2). A large choice of executables suitable for various operations of the program are provided. Program summary Program title: SuSeFLAV Catalogue identifier: AEOD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 76552 No. of bytes in distributed program, including test data, etc.: 582787 Distribution format: tar.gz Programming language: Fortran 95. Computer: Personal Computer, Work-Station. Operating system: Linux, Unix. Classification: 11.6. Nature of problem: Determination of masses and mixing of supersymmetric particles within the context of MSSM with conserved R-parity with and without the presence of Type-I seesaw. Inter-generational mixing is considered while calculating the mass spectrum. Supersymmetry breaking parameters are taken as inputs at a high scale specified by the mechanism of supersymmetry breaking. RG equations including full inter-generational mixing are then used to evolve these parameters up to the electroweak breaking scale. The low energy supersymmetric spectrum is calculated at the scale where successful radiative electroweak symmetry breaking occurs. At weak scale standard model fermion masses, gauge couplings are determined including the supersymmetric radiative corrections. Once the spectrum is computed, the program proceeds to various lepton flavor violating observables (e.g., BR(mu -> e gamma), BR(tau -> mu gamma) etc.) at the weak scale. Solution method: Two loop RGEs with full 3 x 3 flavor mixing for all supersymmetry breaking parameters are used to compute the low energy supersymmetric mass spectrum. An adaptive step size Runge-Kutta method is used to solve the RGEs numerically between the high scale and the electroweak breaking scale. Iterative procedure is employed to get the consistent radiative electroweak symmetry breaking condition. The masses of the supersymmetric particles are computed at 1-loop order. The third generation SM particles and the gauge couplings are evaluated at the 1-loop order including supersymmetric corrections. A further iteration of the full program is employed such that the SM masses and couplings are consistent with the supersymmetric particle spectrum. Additional comments: Several executables are presented for the user. Running time: 0.2 s on a Intel(R) Core(TM) i5 CPU 650 with 3.20 GHz. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Dominance and subordinate behaviors are important ingredients in the social organizations of group living animals. Behavioral observations on the two eusocial species Ropalidia marginata and Ropalidia cyathiformis suggest varying complexities in their social systems. The queen of R. cyathiformis is an aggressive individual who usually holds the top position in the dominance hierarchy although she does not necessarily show the maximum number of acts of dominance, while the R. marginata queen rarely shows aggression and usually does not hold the top position in the dominance hierarchy of her colony. In R. marginata, more workers are involved in dominance-subordinate interactions as compared to R. cyathiformis. These differences are reflected in the distribution of dominance-subordinate interactions among the hierarchically ranked individuals in both the species. The percentage of dominance interactions decreases gradually with hierarchical ranks in R. marginata while in R. cyathiformis it first increases and then decreases. We use an agent-based model to investigate the underlying mechanism that could give rise to the observed patterns for both the species. The model assumes, besides some non-interacting individuals, the interaction probabilities of the agents depend on their pre-differentiated winning abilities. Our simulations show that if the queen takes up a strategy of being involved in a moderate number of dominance interactions, one could get the pattern similar to R. cyathiformis, while taking up the strategy of very low interactions by the queen could lead to the pattern of R. marginata. We infer that both the species follow a common interaction pattern, while the differences in their social organization are due to the slight changes in queen as well as worker strategies. These changes in strategies are expected to accompany the evolution of more complex societies from simpler ones.
Resumo:
Some low-surface-brightness galaxies are known to have extremely thin stellar discs with the vertical-to-planar axes ratio 0.1 or less, often referred to as superthin galaxies. Although their existence is now known for over three decades, the physical origin of the superthin discs is still not understood. We model the vertical thickness of the stellar disc using our model of a two-component (gravitationally coupled stars and gas) disc embedded in a dark matter halo, for a bulgeless, superthin galaxy UGC 7321 which has a dense, compact halo, and is compare with a typical dwarf irregular galaxy Holmberg II which has a low-density, non-compact halo. We show that while the presence of gas does constrain the stellar disc thickness and hence its axial ratio, it is the compact dark matter halo which plays the decisive role in determining the mean distribution of stars in the vertical direction in low-luminosity bulgeless galaxies like UGC 7321, and causes the stellar disc to be superthin. Thus, the compactness of the dark matter halo significantly affects the disc structure and this could be important for the early evolution of galaxies.
Resumo:
In this paper we calculate the potential for a prolate spheroidal distribution as in a dark matter halo with a radially varying eccentricity. This is obtained by summing up the shell-by-shell contributions of isodensity surfaces, which are taken to be concentric and with a common polar axis and with an axis ratio that varies with radius. Interestingly, the constancy of potential inside a shell is shown to be a good approximation even when the isodensity contours are dissimilar spheroids, as long as the radial variation in eccentricity is small as seen in realistic systems. We consider three cases where the isodensity contours are more prolate at large radii, or are less prolate or have a constant eccentricity. Other relevant physical quantities like the rotation velocity, the net orbital and vertical frequency due to the halo and an exponential disc of finite thickness embedded in it are obtained. We apply this to the kinematical origin of Galactic warp, and show that a prolate-shaped halo is not conducive to making long-lived warps - contrary to what has been proposed in the literature. The results for a prolate mass distribution with a variable axis ratio obtained are general, and can be applied to other astrophysical systems, such as prolate bars, for a more realistic treatment.
Resumo:
We study the conditions for disc galaxies to produce superbubbles that can break out of the disc and produce a galactic wind. We argue that the threshold surface density of supernovae rate for seeding a wind depends on the ability of superbubble energetics to compensate for radiative cooling. We first adapt Kompaneets formalism for expanding bubbles in a stratified medium to the case of continuous energy injection and include the effects of radiative cooling in the shell. With the help of hydrodynamic simulations, we then study the evolution of superbubbles evolving in stratified discs with typical disc parameters. We identify two crucial energy injection rates that differ in their effects, the corresponding breakout ranging from being gentle to a vigorous one. (a) Superbubbles that break out of the disc with a Mach number of the order of 2-3 correspond to an energy injection rate of the order of 10(-4) erg cm(-2) s(-1), which is relevant for disc galaxies with synchrotron emitting gas in the extra-planar regions. (b) A larger energy injection threshold, of the order of 10(-3) erg cm(-2) s(-1), or equivalently, a star formation surface density of similar to 0.1 M-circle dot yr(-1) kpc(-2), corresponds to superbubbles with a Mach number similar to 5-10. While the milder superbubbles can be produced by large OB associations, the latter kind requires super-starclusters. These derived conditions compare well with observations of disc galaxies with winds and the existence of multiphase halo gas. Furthermore, we find that contrary to the general belief that superbubbles fragment through Rayleigh-Taylor (RT) instability when they reach a vertical height of the order of the scaleheight, the superbubbles are first affected by thermal instability for typical disc parameters and that RT instability takes over when the shells reach a distance of approximately twice the scaleheight.
Resumo:
Treatment of gem-dihalo-1,2-cyclopropanated D-oxyglycal with primary, secondary, and unsaturated alcohols, in the presence of AgOAc, leads to the formation of chloro-oxepines exclusively. Reaction of the resulting 2-chloro-oxepines with excess alcohol in the presence of AgOAc, do not promote further reactions. This result is in contrast to the reactions of D-glucal derived halo-oxepine with alcohols known previously that lead to the formation of furanoses as the major product under similar reaction conditions. Observation of this study consolidates the reactivity differences of gem-dihalo-1,2-cyclopropanated oxyglycals, as compared to gem-dihalo- 1,2-cyclopropanated glycals. (C) 2014 Elsevier Ltd. All rights reserved.