997 resultados para Quantum spin Hall insulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic quantum computation is based on the adiabatic evolution of quantum systems. We analyze a particular class of quantum adiabatic evolutions where either the initial or final Hamiltonian is a one-dimensional projector Hamiltonian on the corresponding ground state. The minimum-energy gap, which governs the time required for a successful evolution, is shown to be proportional to the overlap of the ground states of the initial and final Hamiltonians. We show that such evolutions exhibit a rapid crossover as the ground state changes abruptly near the transition point where the energy gap is minimum. Furthermore, a faster evolution can be obtained by performing a partial adiabatic evolution within a narrow interval around the transition point. These results generalize and quantify earlier works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent electronic transport through individual molecules is crucially sensitive to quantum interference. We investigate the zero-bias and zero-temperature conductance through pi-conjugated annulene molecules weakly coupled to two leads for different source-drain configurations, finding an important reduction for certain transmission channels and for particular geometries as a consequence of destructive quantum interference between states with definite momenta. When translational symmetry is broken by an external perturbation we find an abrupt increase of the conductance through those channels. Previous studies concentrated on the effect at the Fermi energy, where this effect is very small. By analyzing the effect of symmetry breaking on the main transmission channels we find a much larger response thus leading to the possibility of a larger switching of the conductance through single molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase separation (PS) in hole-doped cobaltites (La1-xSrxCoxO3) is drawing renewed interest recently. In particular, the magnetic behavior of La0.85Sr0.15CoO3 has been subjected to a controversial debate for the past several years; while some groups show evidence for magnetic PS, others show spin glass (SG) behavior. Here, an attempt is made to resolve the controversy related to ``PS versus SG'' behavior in this compound. We present the results of a comprehensive investigation of the dc magnetization, ac susceptibility, and the magnetotransport properties of La0.85Sr0.15CoO3 samples. We contemplate that the magnetic PS in La0.85Sr0.15CoO3 is neither intrinsic nor inherent, but it is a consequence of the preparation conditions. It is realized that a low temperature annealed (LTA) sample shows PS whereas the high temperature annealed (HTA) sample shows SG behavior. The Brillouin-like behavior of field cooled dc magnetization and apparently no frequency dependent peak shift in ac susceptibility for the LTA sample characterize it to be of ferromagneticlike whereas a kink in field cooled dc magnetization and a considerable amount (similar to 3 K) of frequency dependent peak shift in the ac susceptibility for the HTA sample characterize it to be of SG state. The magnetotransport properties show that the HTA sample is more semiconducting as compared to the LTA sample. This is interpreted in terms of the presence of isolated as well as coalescing metallic ferromagnetic clusters in the case of LTA sample. The magnetoresistance (MR) at 10 K for the HTA sample exhibits a huge value (similar to 65%) as compared to the LTA sample, and it monotonically decreases with the rise in temperature. Such a high value of MR in the case of HTA sample is strongly believed to be due to the spin dependent part of random potential distribution. Further, the slow decay of remnant magnetization with progress of time and the existence of hysteresis at higher temperatures (up to 200 K) in the case of LTA sample as compared to the HTA sample clearly unveil different magnetic states associated with them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the transport properties of the Dirac fermions with a Fermi velocity v(F) on the surface of a topological insulator across a ferromagnetic strip providing an exchange field J over a region of width d. We show that the conductance of such a junction, in the clean limit and at low temperature, changes from oscillatory to a monotonically decreasing function of d beyond a critical J. This leads to the possible realization of a magnetic switch using these junctions. We also study the conductance of these Dirac fermions across a potential barrier of width d and potential V-0 in the presence of such a ferromagnetic strip and show that beyond a critical J, the criteria of conductance maxima changes from chi = eV(0)d/(h) over barv(F) = n pi to chi = (n + 1/2)pi for integer n. We point out that these novel phenomena have no analogs in graphene and suggest experiments which can probe them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the microstructure, surface states, valence fluctuations, magnetic properties, and exchange bias effect in MnO2 nanowires. High purity α-MnO 2 rectangular nanowires were synthesized by a facile hydrothermal method with microwave-assisted procedures. The microstructure analysis indicates that the nanowires grow in the [0 0 1] direction with the (2 1 0) plane as the surface. Mn3+ and Mn2+ ions are not found in the system by X-ray photoelectron spectroscopy. The effective magnetic moment of the manganese ions fits in with the theoretical and experimental values of Mn4+ very well. The uncoupled spins in 3d3 orbitals of the Mn 4+ ions in MnO 6 octahedra on the rough surface are responsible for the net magnetic moment. Spin glass behavior is observed through magnetic measurements. Furthermore, the exchange bias effect is observed for the first time in pure α-MnO2 phase due to the coupling of the surface spin glass with the antiferromagnetic α-MnO2 matrix. These α-MnO2 nanowires, with a spin-glass-like behavior and with an exchange bias effect excited by the uncoupled surface spins, should therefore inspire further study concerning the origin, theory, and applicability of surface structure induced magnetism in nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from the harmonic to the double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain epsilon = 4 epsilon c the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H-1 and F-19 spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10-400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the Y(gl(m|n)) super Yangian symmetry of the SU(m|n) supersymmetric Haldane-Shastry spin chain, we show that the partition function of this model satisfies a duality relation under the exchange of bosonic and fermionic spin degrees of freedom. As a byproduct of this study of the duality relation, we find a novel combinatorial formula for the super Schur polynomials associated with some irreducible representations of the Y(gl(m|n)) Yangian algebra. Finally, we reveal an intimate connection between the global SU(m|n) symmetry of a spin chain and the boson-fermion duality relation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the thermoelectric power under strong magnetic field (TPSM) in quantum dots (QDs) of nonlinear optical, III-V, II-VI, GaP, Ge, Te, Graphite, PtSb2, zerogap, Lead Germanium Telluride, GaSb, stressed materials, Bismuth, IV-VI, II-V, Zinc and Cadmium diphosphides, Bi2Te3 and Antimony respectively. The TPSM in III-V, II-VI, IV-VI, HgTe/CdTe quantum well superlattices with graded interfaces and effective mass superlattices of the same materials together with the quantum dots of aforementioned superlattices have also been investigated in this context on the basis of respective carrier dispersion laws. It has been found that the TPSM for the said quantum dots oscillates with increasing thickness and decreases with increasing electron concentration in various manners and oscillates with film thickness, inverse quantizing magnetic field and impurity concentration for all types of superlattices with two entirely different signatures of quantization as appropriate in respective cases of the aforementioned quantized structures. The well known expression of the TPSM for wide-gap materials has been obtained as special case for our generalized analysis under certain limiting condition, and this compatibility is an indirect test of our generalized formalism. Besides, we have suggested the experimental method of determining the carrier contribution to elastic constants for nanostructured materials having arbitrary dispersion laws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a three player quantum `Dilemma' game each player takes independent decisions to maximize his/her individual gain. The optimal strategy in the quantum version of this game has a higher payoff compared to its classical counterpart. However, this advantage is lost if the initial qubits provided to the players are from a noisy source. We have experimentally implemented the three player quantum version of the `Dilemma' game as described by Johnson, [N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R)] using nuclear magnetic resonance quantum information processor and have experimentally verified that the payoff of the quantum game for various levels of corruption matches the theoretical payoff. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured near normal incidence far-infrared (FIR) reflectivity spectra of a single crystal of TbMnO3 from 10 K to 300 K in the spectral range of 50 cm(-1)-700 cm(-1). Fifteen transverse optic (TO) and longitudinal optic (LO) modes are identified in the imaginary part of the dielectric function epsilon(2)(omega) and energy loss function Im(-1/epsilon(omega)), respectively. Some of the observed phonon modes show anomalous softening below the magnetic transition temperature T-N (similar to 46 K). We attribute this anomalous softening to the spin-phonon coupling caused by phonon modulation of the superexchange integral between the Mn3+ spins. The effective charge of oxygen (Z(O)) calculated using the measured LO-TO splitting increases below TN.