955 resultados para Pulsed MIG
Resumo:
The adrenergic receptors (ARs) (subtypes alpha 1, alpha 2, beta 1, and beta 2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. We have previously assigned the genes for beta 2- and alpha 2-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, we have now mapped the alpha 1-AR gene to chromosome 5q32----q34, the same position as beta 2-AR, and the beta 1-AR gene to chromosome 10q24----q26, the region where alpha 2-AR is located. In mouse, both alpha 2- and beta 1-AR genes were assigned to chromosome 19, and the alpha 1-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the alpha 1- and beta 2-AR genes in humans are within 300 kilobases (kb) and the distance between the alpha 2- and beta 1-AR genes is less than 225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediating the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families of receptor molecules.
Resumo:
Les recherches récapitulées dans cette thèse de doctorat ont porté sur les causes de l’organisation spatiale des végétations périodiques. Ces structures paysagères aux motifs réguliers, tachetés, tigrés ou labyrinthiques, d’échelle décamétrique à hectométrique, couvrant des étendues considérables sur au moins trois continents, constituent un cas d’école dans l’étude des processus endogènes présidant à l’hétérogénéité du couvert végétal. Ces structures prennent place sur un substrat homogène, mis à part la rétroaction du couvert lui-même, et sont marquées par des écotones abrupts et la persistance d’une proportion considérable de sol nu. Plusieurs modèles ont mis en avant l’existence possible d’un phénomène d’auto-organisation du couvert, qui verrait une structure d’ensemble émerger des interactions locales entre individus. Ces modèles se basent sur le jeu simultané de la consommation de la ressource (compétition) et de l’amélioration de l’un ou l’autre des éléments du bilan de la même ressource par le couvert (facilitation). La condition à l’existence d’une structure d’ensemble spatialement périodique et stable réside dans une différence entre la portée de la compétition (plus grande) et celle de la facilitation. L’apparition de ces structures est modulée par le taux de croissance biologique, qui est le reflet des contraintes extérieures telles que l’aridité, le pâturage ou la coupe de bois. Le modus operandi des interactions spatiales supposées entre individus reste largement à préciser.
Nos recherches ont été menées au sud-ouest de la République du Niger, à l’intérieur et dans les environs du parc Régional du W. Trois axes ont été explorés :(i) Une étude de la dépendance spatiale entre la structure de la végétation (biovolumes cartographiés) et les paramètres du milieu abiotique (relief, sol), sur base d’analyses spectrales et cross-spectrales par transformée de Fourier (1D et 2D). (ii) Une étude diachronique (1956, 1975 et 1996) à large échelle (3000 km²) de l’influence de l’aridité et des pressions d’origine anthropique sur l’auto-organisation des végétations périodiques, basée sur la caractérisation de la structure spatiale des paysages sur photos aériennes via la transformée de Fourier en 2D. (iii) Trois études portant sur les interactions spatiales entre individus :En premier lieu, via l’excavation des systèmes racinaires (air pulsé) ;Ensuite, par un suivi spatio-temporel du bilan hydrique du sol (blocs de gypse) ;Enfin, via le marquage de la ressource par du deutérium.
Nous avons ainsi pu établir que les végétations périodiques constituent bien un mode d’auto-organisation pouvant survenir sur substrat homogène et modulé par les contraintes climatiques et anthropiques. Un ajustement rapide entre l’organisation des végétations périodiques et le climat a pu être montrée en zone protégée. La superficie et l’organisation des végétations périodiques y ont tour à tour progressé et régressé en fonction d’épisodes secs ou humides. Par contre, en dehors de l’aire protégée, la possibilité d’une restauration du couvert semble fortement liée au taux d’exploitation des ressources végétales. Ces résultats ont d’importantes implications quant à la compréhension des interactions entre climat et écosystèmes et à l’évaluation de leurs capacités de charge. La caractérisation de la structure spatiale des végétations arides, notamment par la transformée de Fourier d’images HR, devrait être généralisée comme outil de monitoring de l’état de ces écosystèmes. Nos études portant sur les modes d’interactions spatiales ont permis de confirmer l’existence d’une facilitation à courte portée du couvert végétal sur la ressource. Cependant, cette facilitation ne semble pas s’exercer sur le terme du bilan hydrique traditionnellement avancé, à savoir l’infiltration, mais plutôt sur le taux d’évaporation (deux fois moindre à l’ombre des canopées). Ce mécanisme exclut l’existence de transferts diffusifs souterrains entre sols nu et fourrés. Des transferts inverses semblent d’ailleurs montrés par le marquage isotopique. L’étude du bilan hydrique et la cartographie du micro-relief, ainsi que la profondeur fortement réduite de la zone d’exploitation racinaire, jettent de sérieux doutes quant au rôle communément admis des transferts d’eau par ruissellement/diffusion de surface en tant que processus clé dans la compétition à distance entre les plantes. L’alternative réside dans l’existence d’une compétition racinaire de portée supérieure aux canopées. Cette hypothèse trouve une confirmation tant par les rhizosphères excavées, superficielles et étendues, que dans le marquage isotopique, montrant des contaminations d’arbustes situés à plus de 15 m de la zone d’apport. De même, l’étude du bilan hydrique met en évidence les influences simultanées et contradictoires (facilitation/compétition) des ligneux sur l’évapotranspiration.
/
This PhD thesis gathers results of a research dealing with the causes of the spatial organisation of periodic vegetations. These landscape structures, featuring regular spotted, labyrinthine or banded patterns of decametric to hectometric scale, and extending over considerable areas on at least three continents, constitute a perfect study case to approach endogenous processes leading to vegetation heterogeneities. These patterns occur over homogeneous substratum, except for vegetation’s own feedbacks, and are marked by sharp ecotones and the persistence of a considerable amount of bare soil. A number of models suggested a possible case of self-organized patterning, in which the general structure would emerge from local interactions between individuals. Those models rest on the interplay of competitive and facilitative effects, relating to soil water consumption and to soil water budget enhancement by vegetation. A general necessary condition for pattern formation to occur is that negative interactions (competition) have a larger range than positive interactions (facilitation). Moreover, all models agree with the idea that patterning occurs when vegetation growth decreases, for instance as a result of reduced water availability, domestic grazing or wood cutting, therefore viewing patterns as a self-organised response to environmental constraints. However the modus operandi of the spatial interactions between individual plants remains largely to be specified.
We carried out a field research in South-West Niger, within and around the W Regional Park. Three research lines were explored: (i) The study of the spatial dependency between the vegetation pattern (mapped biovolumes) and the factors of the abiotic environment (soil, relief), on the basis of spectral and cross-spectral analyses with Fourier transform (1D and 2D). (ii) A broad scale diachronic study (1956, 1975, 1996) of the influence of aridity and human induced pressures on the vegetation self-patterning, based on the characterisation of patterns on high resolution remote sensing data via 2D Fourier transform. (iii) Three different approaches of the spatial interactions between individuals: via root systems excavation with pulsed air; via the monitoring in space and time of the soil water budget (gypsum blocks method); and via water resource labelling with deuterated water.
We could establish that periodic vegetations are indeed the result of a self-organisation process, occurring in homogeneous substratum conditions and modulated by climate and human constraints. A rapid adjustment between vegetation patterning and climate could be observed in protected zones. The area and patterning of the periodic vegetations successively progressed and regressed, following drier or wetter climate conditions. On the other hand, outside protected areas, the restoration ability of vegetation appeared to depend on the degree of vegetation resource exploitation. These results have important implications regarding the study of vegetation-climate interactions and the evaluation of ecosystems’ carrying capacities. Spatial pattern characterisation in arid vegetations using Fourier transform of HR remote sensing data should be generalised for the monitoring of those ecosystems. Our studies dealing with spatial interaction mechanisms confirmed the existence of a short range facilitation of the cover on water resource. However, this facilitation does not seem to act through the commonly accepted infiltration component, but rather on the evaporative rate (twice less within thickets). This mechanism excludes underground diffusive transfers between bare ground and vegetation. Inverse transfers were even shown by deuterium labelling. Water budget study and micro-elevation mapping, along with consistent soil shallowness, together cast serious doubts on the traditional mechanism of run-off/diffusion of surface water as a key process of the long range competition between plants. An alternative explanation lies in long range root competition. This hypothesis find support as well in the excavated root systems, shallow and wide, as in isotopic labelling, showing contaminations of shrubs located up to 15 m of the irrigated area. Water budget study also evidenced simultaneous contradictory effects (facilitation/competition) of shrubs on evapotranspiration.
Resumo:
Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
Resumo:
Sequential alternation of extracellular digestion in the stomach and intracellular digestion in the diverticula appears widespread among bivalves. The present study documents some physiological consequences of such processes in Mytilus edulis L. collected during 1981 from Whitsand Bay, Cornwall, England. Pronounced temporal fluctuations in faecal deposition are described that relate, in terms of amplitude and period, to both sinusoidal rhythmicity established for ammonia excretion and changes in the morphology of digestive tubules. Although at least partially synchronised among replicate groups of mussels, these cycles bore no consistent relationship with exogenous influences. Hourly fluctuation in the net absorption efficiency for nitrogen, as evidenced by the mean percentage ±2 SE, measured over 24 h sampling periods, was considerable (16.0±53.7, 49.3±10.9 and 52.8±6.6 for mussels acclimated in March, June and October, respectively). This variation in absorption derived from an inverse relationship between the percentage nitrogen within faeces and the rate of faecal egestion. Accordingly, peaks of faecal deposition presumably represented the pulsed remnants of intracellular digestion. Co-ordinated rhythms of digestion, absorption and excretion were thus evident in M. edulis. These processes displayed seasonally dependent periodicities of approximately 8, 3 and 4 h in March, June and October, respectively. It was concluded that, at least for M. edulis, this previously unquantified rhythmicity of physiological processes warrants careful consideration during assays commonly undertaken in the complication of nutrient and energy budgets.
Resumo:
The oceans have shown a recent rapid and accelerating rise in temperature with, given the close link between temperature and marine organisms, pronounced effects on ecosystems. Here we describe for the first time a globally synchronous pattern of pulsed short period (�1 year long) emanations of warm sea surface temperature anomalies from tropical seas towards the poles on the shelf/slope with an intensification of the warming after the 1976/1977, 1986/1987 and 1997/1998 El Nin˜os. On the eastern margins of continents the anomalies propagate towards the poles in part by largely baroclinic boundary currents, reinforced by regional atmospheric warming. The processes contributing to the less continuous warm anomalies on western margins are linked to the transfer of warmth from adjacent western boundary currents. These climate induced events show a close parallelism with the timing of ecosystem changes in shelf seas, important for fisheries and ecosystem services, and melting of sea-ice.
Resumo:
In a warming climate, differential shifts in the seasonal timing of predators and prey have been suggested to lead to trophic ‘‘mismatches’’ that decouple primary, secondary and tertiary production. We tested this hypothesis using a 25-year time-series of weekly sampling at the Plymouth L4 site, comparing 57 plankton taxa spanning 4 trophic levels. During warm years, there was a weak tendency for earlier timings of spring taxa and later timings of autumn taxa. While this is in line with many previous findings, numerous exceptions existed and only a few taxa (e.g. Gyrodinium spp., Pseudocalanus elongatus, and Acartia clausi) showed consistent, strong evidence for temperature-related timing shifts, revealed by all 4 of the timing indices that we used. Also, the calculated offsets in timing i.e. ‘‘mismatches’’) between predator and prey were no greater in extreme warm or cold years than during more average years. Further, the magnitude of these offsets had no effect on the ‘‘success’’ of the predator, in terms of their annual mean abundance or egg production rates. Instead numerous other factors override, including: inter-annual variability in food quantity, high food baseline levels, turnover rates and prolonged seasonal availability, allowing extended periods of production. Furthermore many taxa, notably meroplankton, increased well before the spring bloom. While theoretically a chronic mismatch, this likely reflects trade-offs for example in predation avoidance. Various gelatinous taxa (Phaeocystis, Noctiluca, ctenophores, appendicularians, medusae) may have reduced these predation constraints, with variable, explosive population outbursts likely responding to improved conditions. The match–mismatch hypothesis may apply for highly seasonal, pulsed systems or specialist feeders, but we suggest that the concept is being over-extended to other marine systems where multiple factors compensate.
Resumo:
Los diferentes tipos de láseres, sobre todo el láser de diodo, irrumpen en la terapéutica podológica para proporcionar una alternativa más de tratamiento en muchas patologías que son el día a día de las consultas. El buen manejo y el conocimiento de sus características son requisitos imprescindibles para no tener efectos secundarios indeseados y poder llevar a cabo tratamientos poco dolorosos, minimizando el tiempo total, y muchas veces proporcionando una solución a diversas patologías.
Resumo:
Ostrea edulis was extremely rare in the wild in Strangford Lough from the early 1900s until renewed spatfall was observed at a number of sites in the 1990s. A monitoring programme was undertaken to investigate the presence and distribution of planktonic oyster larvae at nine sites around the lough between June and September in 1997 and 1998 as a precursor to studies of spatfall patterns. Larval densities at sites in the northern basin of the lough were significantly higher than those in the southern basin where larvae were lacking or in low numbers. Densities and sizes of oyster larvae showed significant temporal variation suggesting pulsed larval release. Larval densities also showed significant spatial variation with higher densities at sites closer to commercial stocks pointing to these as the main source of oyster larvae. This hypothesis was supported during a larval flux study over a complete tidal cycle which indicated a 90% net tidal movement of O. edulis larvae from the entrance of the bay where commercial stocks were held to the main body of the lough. Thus the maintenance of dense commercial stocks of flat oysters may provide the key to the redevelopment of native oyster beds in Strangford Lough and elsewhere by providing an initial broodstock nucleus from which larvae can be exported.
Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors
Resumo:
Pulsed-laser deposition has been used to fabricate Au/Ba0.5Sr0.5TiO3/SrRuO3/MgO thin film capacitor structures. Crystallographic and microstructural investigations indicated that the Ba0.5Sr0.5TiO3 (BST) had grown epitaxially onto the SrRuO3 lower electrode, inducing in-plane compressive and out- of-plane tensile strain in the BST. The magnitude of strain developed increased systematically as film thickness decreased. At room temperature this composition of BST is paraelectric in bulk. However, polarization measurements suggested that strain had stabilized the ferroelectric state, and that the decrease in film thickness caused an increase in remanent polarization. An increase in the paraelectric-ferroelectric transition temperature upon a decrease in thickness was confirmed by dielectric measurements. Polarization loops were fitted to Landau-Ginzburg-Devonshire (LGD) polynomial expansion, from which a second order paraelectric-ferroelectric transition in the films was suggested at a thickness of similar to500 nm. Further, the LGD analysis showed that the observed changes in room temperature polarization were entirely consistent with strain coupling in the system. (C) 2002 American Institute of Physics.
Resumo:
The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.
Resumo:
Thin film capacitor structures in which the dielectric is composed of superlattices of the relaxors [0.2Pb(Zn1/3Nb2/3)O- 3-0.8BaTiO(3)] and Pb(Mg1/3Nb2/3)O-3 have been fabricated by pulsed laser deposition. Superlattice wavelength (Lambda) was varied between similar to3 and similar to 600 nm, and dielectric properties were investigated as a function of Lambda. Progressive enhancement of the dielectric constant was observed on decreasing Lambda, and, in contrast to previous work, this was not associated with the onset of Maxwell-Wagner behavior. Polarization measurements as a function of temperature suggested that the observed enhancement in dielectric constant was associated with the onset of a coupled response. The superlattice wavelength (Lambda =20 nm) at which coupled functional behavior became apparent is comparable to that found in literature for the onset of coupled structural behavior (between Lambda =5 nm and Lambda =10 nm). (C) 2001 American Institute of Physics.
Resumo:
The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.
Resumo:
Thin-film capacitors, with barium strontium titanate (BST) dielectric layers between 7.5 and 950 nm in thickness, were fabricated by pulsed-laser deposition. Both crystallography and cation chemistry were consistent with successful growth of the BST perovskite. At room temperature, all capacitors displayed frequency dispersion such that epsilon (100 kHz)/epsilon (100 Hz) was greater than 0.75. The dielectric constant as a function of thickness was fitted, using the series capacitor model, for BST thicknesses greater than 70 nm. This yielded a large interfacial d(i)/epsilon (i) ratio of 0.40 +/-0.05 nm, implying a highly visible parasitic dead layer within the capacitor structure. Modeled consideration of the dielectric behavior for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/epsilon against d at the dead-layer thickness. In the capacitors studied here, no anomaly was observed. Hence, either (i) 7.5 nm is an upper limit for the total dead-layer thickness in the SRO/BST/Au system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect. (C) 2001 American Institute of Physics.
Resumo:
Pulsed laser deposition was used to make a series of Au/Ba0.5Sr0.5TiO3 (BST)/SrRuO3/MgO thin film capacitors with dielectric thickness ranging from similar to15 nm to similar to1 mum. Surface grain size of the dielectric was monitored as a function of thickness using both atomic force microscopy and transmission electron microscopy. Grain size data were considered in conjunction with low field dielectric constant measurements. It was observed that the grain size decreased with decreasing thickness in a manner similar to the dielectric constant. Simple models were developed in which a functionally inferior layer at the grain boundary was considered as responsible for the observed dielectric behavior. If a purely columnar microstructure was assumed, then constant thickness grain-boundary dead layers could indeed reproduce the series capacitor dielectric response observed, even though such layers would contribute electrically in parallel with unaffected bulk- like BST. Best fits indicated that the dead layers would have a relative dielectric constant similar to40, and thickness of the order of tens of nanometers. For microstructures that were not purely columnar, models did not reproduce the observed dielectric behavior well. However, cross-sectional transmission electron microscopy indicated columnar microstructure, suggesting that grain boundary dead layers should be considered seriously in the overall dead-layer debate. (C) 2002 American Institute of Physics.
Resumo:
Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment. (C) 2005 American Institute of Physics.