886 resultados para Pseudomonas aeruginosa LBI
Resumo:
Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) were studied monthly in a large shallow, eutrophic lake of the subtropical China during June-November, 2003. Microcystins (MCs) were quantitatively determined by High-Performance Liquid Chromatography (HPLC) with a qualitative analysis by a Finnigan LC-MS system. On the average of the study period, hepatopancreas was the highest in MC contents (mean 4.14 and range 1.06-7.42 mug g(-1) DW), followed by digestive tracts (mean 1.69 and range 0.8-4.54 mug g(-1) DW) and gonad (mean 0.715 and range 0-2.62 mug g(-1) DW), whereas foot was the least (mean 0.01 and range 0-0.06 mug g(-1) DW). There was a positive correlation in MC contents between digestive tracts and hepatopancreas. A constantly higher MC content in hepatopancreas than in digestive tracts indicates a substantial bioaccumulation of MCs in the hepatopancreas of the snail. The average ratio of MC-LR/MC-RR showed a steady increase from digestive tracts (0.44) to hepatopancreas (0.63) and to gonad (0.96), suggesting that MC-LR was more resistant to degradation in the snail. Since most MCs were present in the hepatopancreas, digestive tracts and gonad with only a very small amount in the edible foot, the risk to human health may not be significant if these toxic parts are removed prior to snail consumption. However, the possible transference of toxins along food chains should not be a negligible concern. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We evaluated the toxic effect of Microcystis aeruginosa on Daphnia carinata King using survival rate, population growth rate, and body length. When fed Microcystis aerugionsa PCC7820 and liberated colonial Microcystis spp., all D. carinata died within five days. When fed a mixture of M. aeruginosa PCC7820 and the green alga Scenedesmus obliquus, the survival rate, population growth rate, and body length of D. carinata generally increased. The survival rates were all above 80% after ten days. However, with liberated colonial M. aeruginosa, the toxic effect on D. carinata was more pronounced, and only at higher concentration of S. obliquus did that toxic effect abate. Our results indicated that green algae could greatly weaken the toxic effect of cyanobacteria.
Resumo:
Using degenerate primers based on conserved regions of the UDP-glucose dehydrogenase (UDPGDH) gene, an initial 476-bp DNA fragment was amplified from the water-bloom forming cyanobacterium, Microcystis aeruginosa FACHB 905. TAIL-PCR and ligation-mediated PCR were used to amplify the flanking regions to isolate an about 2.5-kb genomic DNA fragment. Sequence analysis revealed an ORF encoding a putative 462 amino acid protein, designated Mud for Microcystis UDPGDH. The Mud amino acid sequence is closely related to UDPGDH sequences from cyanobacterium Synechocystis PCC6803 (73% identity, 81% similarity), and bacterium Bacillus subtilis (51% identity and 67% similarity). The cloned mud gene was expressed in Escherichia coli using the pGEX-4T-1 fusion expression vector system to generate a GST-Mud fusion protein that exhibited UDPGDH activity. The cytosolic fraction of M aeruginosa FACHB 905 was subjected to Western analysis with an anti-Mud antibody, which revealed a single band of approximately 49 kD, consistent with the deduced molecular mass of the enzyme. The Mud protein could thus be characterized as a UDP-glucose dehydrogenase, which was a key enzyme for polysaccharide synthesis and has, for the first time, been studied in algae.
Resumo:
A cyanobacterial strain, which produced high content of microcystin-LR (MC-LR) but no rnicrocystin-RR (MC-RR), was isolated from the hypertrophic Dianchi Lake in China and identified as Microcystis aeruginosa DC-1. Effects of nitrogen containing chemicals and trace elements on the growth and the production of MC-LR by this strain were Studied. In the presence of bicine, compared with urea and ammonium, nitrate greatly promoted the growth and the production of MC-LR. However, leucine and arginine, which were the constitutional components in the molecular structure of MC-LR or RR, inhibited the production of MC-LR. Iron and silicon up to 10mg/L had little effects on the growth of M. aeruginosa DC-1, but the production of MC-LR was apparently enhanced. Under all conditions studied here, only MC-LR but no RR was detected within the cells of M. aeruginosa DC-1. Thus, chemical forms of nitrogen, rather than the usually concerned the total nitrogen, Lind trace elements played important roles in the production of MC toxins during cyanobacterial blooms.
Resumo:
We studied in the laboratory the population growth rates of four cladocerans fed both with decomposed Microcystis aeruginosa and with a mixture of fresh colonial M. aeruginosa and Scenedesmus obliquus. The neonates of Diqphanosoma brachyurum and Daphnia carinata were able to develop into adults when they were fed with <64mum decomposed M. aeruginosa, while those of Moina micrura could not use decomposed M. aeruginosa. The population growth rate of the largest species, D. carinata, was less affected by the presence of fresh colonial M. aeruginosa than the other three species. D. carinata obtained the highest growth rate at a biomass level of 10 mg L-1 fresh colonial M. aeruginosa, indicating that, to some extent, it can use colonial M. aeruginosa at a size range of 64-112mum. The population growth rate of M. micrura was negatively correlated with fresh colonial M. aeruginosa within a range of 10-100 mg L-1. The population growth rates of D. brachyurum and Ceriodaphnia cornuta were remarkably decreased by fresh colonial M. aeruginosa, although no significant difference was found within the M. aeruginosa biomass range of 10-100 mg L-1 for either cladoceran. At a biomass level of 50 mg L-1 M. aeruginosa, the population growth rates of the four cladocerans positively correlated with S. obliquus biomass within a range of 0.1-5.0 mg L-1. Our results indicate that the zooplankton community under bloom condition is shaped by the quantity of both M. aeruginosa and other edible algae.
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
Enclosure experiments with three treatments (sediment addition, sediment + nitrogen enrichment, sediment + phosphorus enrichment) and unfertilized controls were performed in shallow hypereutrophic Lake Donghu during the summer of 2000. Dense Microcystis aeruginosa blooms occurred in all the enclosures during the experimental period but not in the surrounding lake water. Generally, the dominant rotifers were Polyarthra vulgalis, Filinia longiseta, Proales sp. and Asplanchna sp. at the beginning of the experiment, followed by a shift to Brachionus calyciflorus, Trichocerca similis, Cephalodella catellina and Anuraeopsis fissa, and finally to F. longiseta, Proales sp. and Keratella cochleris. M. aeruginosa blooms strongly suppressed the larger Diaphanosoma brachyurum but enhanced the development of the smaller cladocerans and rotifers that probably efficiently utilized organic matter from M. aeruginosa through the detritus food chain. The smaller cladoceran and rotifers coexisted successfully throughout the experimental period.
Resumo:
水华暴发是一个世界性的问题,近年来在发展中国家显得尤其严重。水华暴发给环境和公众健康带来巨大灾难,一些蓝藻产生的毒素可以造成鱼类、鸟禽和家畜的死亡,而臭名昭著的微囊藻产生的微囊藻毒素更是有强烈致癌效应。因此,寻找控制水华藻类的有效方法非常迫切。在利用物理和化学方法处理不甚理想的情况下,利用溶藻细菌控藻成为一个新的研究方向。溶藻细菌一般直接从富营养化水体中分离,杀藻活力对有害蓝藻具有较强的选择性而不危害其它生物,尤其适合在水华发生初期使用,可以在短时间内达到阻止藻类增殖的效果。本研究富集分离到一个高效溶解铜绿微囊藻的溶藻菌群,对其溶藻效应和溶藻机制进行了探索研究。 1溶藻菌群的富集筛选及其溶微囊藻效果 富集筛选得到一个有明显抑藻效果的菌群,它对铜绿微囊藻有显著溶藻效果。与对照组相比,加入富集的溶藻菌后,第4 d开始出现溶藻现象,6~8 d出现明显的溶藻效果,8 d后测得叶绿素去除率在85%以上。 2 溶藻菌群的作用范围及溶藻特性 富集分离到的溶藻菌群对铜绿微囊藻和念珠藻有显著溶藻作用,对水华微囊藻和其它几株受试微囊藻没有明显溶藻效应。该溶藻菌群不仅可以在液体中溶解铜绿微囊藻,生长在固体平板上的藻苔也有一定的溶藻效应,生成溶藻空斑。保证快速溶藻的最大稀释度可以达到1/100, 000。 3 环境因子对菌群溶藻效力的影响 试验发现,不同的pH、温度、和光照条件下,溶藻菌群溶藻效力明显不同,且不同种类的氮源对其溶藻作用也有一定影响。这些条件对该菌群溶藻作用的影响,在相当的程度上可能取决于它们对藻和细菌两者的生长状况的影响综合。 4 溶藻菌群的溶藻作用机理 溶藻菌液过滤除菌和煮沸灭菌处理后溶藻液,未见明显的溶藻效果,只有原液具有很好的溶藻效果。因此可初步确定,蓝藻细胞的溶解可能是由溶藻菌直接接触藻细胞产生的作用效果。显微镜观察发现,细菌在溶藻的过程中频繁地接触藻细胞并侵入藻细胞,破坏进而裂解杀死藻细胞。这也进一步说明了此溶藻菌是通过直接方式杀藻。 5 溶藻菌群的菌群结构解析 分离有溶藻效果的纯菌的多次尝试都没有成功。结合DGGE和16S rDNA文库综合分析发现:Rubritepida菌,假单胞菌和鞘氨醇单胞菌是存在于铜绿微囊藻中的三种伴生细菌。加入富集的溶藻菌群后,菌群结构发生明显的变化,Rubritepida菌、假单胞菌消失,混合菌群则包含未培养黄杆菌,鞘氨醇单胞菌和噬氢菌,其中黄杆菌是优势菌群,并且细菌种群结构的变化与藻细胞消亡之间有显著的相关性。通过菌种的分离鉴定与DGGE和16S rDNA文库的测序结果比较,一些未培养菌可能在溶藻过程中起重要调控作用。 6 溶藻细菌控藻应用基础 (1) 扩大规模的模拟水华实验进一步确定了细菌对微囊藻的强烈溶解作用。 (2) 铜绿微囊藻(Microcystis aeruginosa 905, zc)、微囊藻(Microcystis spp., zd)和溶藻菌群共培养试验表明,zc可以抑制zd生长,而溶藻菌群可以溶zc。 本研究是第一次报道混合菌群的溶藻效应。该溶藻菌群对带有藻际细菌的铜绿微囊藻具有高效的溶藻效力,表明它对自然界中存在的带菌铜绿微囊藻和其它一些蓝藻的生消具有一定的控制作用。对进一步研究菌藻关系与生态学作用,以及对富营养化湖泊和水库水体中蓝藻暴发的防控,该菌群具有一定的应用潜力。 Cyanobacterial blooms break out frequently all over the world, especially in developing countries. Blooms create enormous disasters to public health and to the environment. Some cyanobacterial blooms produce extremely toxic substances that have killed fish, domestic animals and birds. It has been well known that microcystins, a hepatoxin produced by Microcystis, can promote tumors in humans. So it is very important to find an effective method for controlling the growth of the bloom-forming algae. Measures for controlling such kind of algae include physical, chemic and biologic means, but the former two may damage the aquatic environment and require high-energy inputs. The alternative approach for the elimination of nuisance algae involves the application of algicidal bacteria. The algicidal bacteria, which are nontoxic to other organisms and most of which are isolated from the eutrophic lake in situ, may be potential microbial algaecides. In the initial stages of the water blooms, they are able to restrain the biomass or multiplication of the bloom-forming algae in a short time. In order to use algicidal bacteria to suppress blooms of M. aeruginosa, we isolated a bacterial culture capable of lysing the noxious cyanobacteria M. aeruginosa. In this paper we described some properties of the bacterial culture and its growth-inhibiting or algicidal effects on the growth of M. aeruginosa, and investigated its algicidal mechanisms. 1 Enrichment of a microbial culture that lyses Microcystis aeruginosa A mixed bacterial culture was isolated from a hypereutrophic pond and showed significant algicidal activity against the noxious Microcystis aeruginosa. Algae lysis would be seen obviously 4 days later when the algae culture was killed and became yellow contrast to no-addition controls, and chlorophyll a (chl-a) reduction went beyond 85% 8 days later. 2 The host range and some other algicidal feature of the mixed algicidal culture. Microcystis aeruginosa, Nostoc sp., were susceptible to the mixed algicidal culture, while the lytic effects of this mixed culture on Microcystis flos-aquae and some other tested Microcystis were feeble.The algicidal culture can not only lyse M. aeruginosa in liquid media, but aslo lyse M. aeruginosa lawns on soft agar plates and form plaques. The maximun dilution of the mixed culture required for rapid Microcystis lysis is 1/100, 000. 3 Influences of environmental factors such as pH, temperature, illumination, and the nitrogen source on the lytic activity of the mixed bacterial culture on Microcystis aeruginosa. In our investigations, it was shown that the lytic activity of the mixed bacterial culture on Microcystis aeruginosa was straightly correlated with pH, temperature, illumination, as well as the nitrogen source in the medium. The impacts of these environmental factors on the algicidal activity of the mixed bacterial culture, to a certain extent, may depend on both the algal and the bacterial growth rates under the tested environmental conditions. 4 The mechanisms of algal cell lysis by the algicidal bacteria Death was detected when the mixed bacterial culture was added to the algal culture, but not when only the culture filtrate or autoclaved bacterial culture was added. This indicates that the mixed bacterial culture did not release extracellular products inhibitory to Microcystis aeruginosa. In addition, under the microscope, we observed frequent contacts btween bacteria and algae cells, and some bacteria can even penetrate into target algal cells and destroyed them. These results may suggest that the bacterium kill the alga by direct contact. 5 Molecular Characterization of the algicidal bacterial culture Attempts for isolation of pure bacterium or bacteria from the enrichment culture responsible for Microcystis lysis have so far been failed. Based on PCR-DGGE (denaturing gradient gel electrophoresis) and 16S rDNA clone library analysis, Rubritepida sp., Pseudomonas sp. and Sphingomonas sp., as accompanying bacteria, were existed in M. aeruginosa. The bacterial community in M. aeruginosa showed significant change after adding the enrichment culture, where uncultured Flavorbacterium sp., Sphingomonas sp. and Hydrogenophaga sp. were observed, and the uncultured Flavorbacterium sp. became a dominant species. The obvious correlation can be seen between change of bacterial population and extinction of M. aeruginosa. Compared identification of pure bacterium with sequencing of DGGE bands and the clone distribution of the clone libraries, it was inferred that some uncultured bacteria were probably play an important role in controlling the growth and abundance of M. aeruginosa. This report is the first example of a mixed bacterial culture with the ability to lyse M. aeruginosa. 6 Further study for algae control by applications of algicidal bacteria (1) Algae lysis would be seen obviously 6 days later when the algae culture was killed and became yellow contrast to no-addition controls, and chlorophyll a (chl-a) was reducted to a low level 20 days later in the simulated water bloom experiments. (2) The growth of Microcystis sp. (zd) was restrained by Microcystis aeruginosa 905 (zc) when they were co-cultured together, and zc was lysed by the algicidal bacterial culture. This report is the first example of a mixed bacterial culture with the ability to lyse M. aeruginosa, and its algicidal activity remained high against non-axenic tested M. aeruginosa, suggesting that bacteria in the natural environment could play a role in controlling the growth and abundance of M. aeruginosa and other cyanobacteria. Such bacteria could also potentially be used as agents to prevent the mass development of cyanobacteria in eutrophic lakes and reservoirs.
Resumo:
A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50 degrees C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.
Resumo:
CopRS/CopABCD is one of the known systems that control copper homeostasis in bacteria. Although CopRS/CopABCD homologues are found to exist in Pseudomonas fluorescens, the potential role of this system in P. fluorescens has not been investigated. In this study a genetic cluster, consisting of copR, S, C, and D but lacking copAB, was identified in a pathogenic P. fluorescens strain (TSS) isolated from diseased fish. The copRSCD cluster was demonstrated to be required for full copper resistance and regulated at the transcription level by Cu. Expression of copCD is regulated directly by the two-component response regulator CopR, which also regulates its own expression. Interruption of the regulated expression of copR affected bacterial growth, biofilm formation, and tissue dissemination and survival. A mutant CopR, which lacks the N-terminal signal receiver domain and is constitutively active, was found to have an attenuating effect on bacterial virulence when expressed in TSS. To our knowledge, this is the first report that suggests a link between CopR and bacterial pathogenicity in P. fluorescens.
Resumo:
Ferric uptake regulator (Fur) is a global transcription regulator that is ubiquitous to Gram-negative bacteria and regulates diverse biological processes, including iron uptake, cellular metabolism, stress response, and production of virulence determinants. As a result, for many pathogenic bacteria, Fur plays a crucial role in the course of infection and disease development. In this study, the fur gene was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased Japanese flounder cultured in a local farm. TSS Fur can partially complement the defective phenotype of an Escherichia coli fur mutant. A TSS fur null mutant, TFM, was constructed. Compared to TSS, TFM exhibits reduced growth ability, aberrant production of outer membrane proteins, decreased resistance against host serum bactericidal activity, impaired ability to disseminate in host blood and tissues, and drastic attenuation in overall bacterial virulence in a Japanese flounder infection model. When used as a live vaccine administered via the injection, immersion, and oral routes, TFM affords high levels of protection upon Japanese flounder against not only P.fluorescens infection but also Aeromonas hydrophila infection. Furthermore, a plasmid, pJAQ, was constructed, which expresses the coding element of the Vibrio harveyi antigen AgaV-DegQ. TFM harboring pJAQ can secret AgaV-DegQ into the extracellular milieu. Vaccination of Japanese flounder with live TFM/pJAQ elicited strong immunoprotection against both V. harveyi and A. hydrophila infections. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pseudomonas fluorescens is an aquaculture pathogen that can infect a number of fish species. The virulence mechanisms of aquatic P. fluorescens remain largely unknown. Many P. fluorescens strains are able to secrete an extracellular protease called AprX, yet no AprX-like proteins have been identified in pathogenic P. fluorescens associated with aquaculture. In this study, a gene encoding an AprX homologue was cloned from TSS, a pathogenic A fluorescens strain isolated from diseased fish. In TSS, AprX is secreted into the extracellular milieu, and the production of AprX is controlled by growth phase and calcium. Mutation of aprX has multiple effects, which include impaired abilities in interaction with cultured host cells, adherence to host mucus, modulation of host immune response, and dissemination and survival in host tissues and blood. Purified recombinant AprX exhibits apparent proteolytic activity, which is optimal at pH 8.0 and 50 degrees C. The protease activity of recombinant AprX is enhanced by Ca2+ and Zn2+ and reduced by Co2+. Cytotoxicity analyses showed that purified recombinant AprX has profound toxic effect on cultured fish cells. These results demonstrate that AprX is an extracellular metalloprotease that is involved in bacterial virulence. (C) 2009 Elsevier B.V. All rights reserved.