957 resultados para Proton Magnetic-resonance


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer is a well-known disease with a significant impact in society not only due to its incidence, more evident in more developed countries, but also due to the expenses related to medical treat-ments. Cancer research is considered an increasingly logical science with great potential for the development of new treatment options. Advances in nanomedicine have resulted in rapid devel-opment of nanomaterials with considerable potential in cancer diagnostics and treatment. The combination of diagnosis and treatment in a single nano-platform is named theranostic. In this PhD thesis a theranostic system for osteosarcoma was proposed, composed by a magnetic core, a polymeric coating, and a chemotherapeutic drug. The presence of a specific targeting agent, in this case a monoclonal antibody, provides high specificity to the proposed theranostic system. For the core of the proposed theranostic system, stable aqueous suspensions of superparamagnetic iron oxide nanoparticles with an average diameter of 9 nm were produced. Chitosan-based poly-meric nanoparticles with a hydrodynamic diameter around 150 nm were successfully produced. Incorporation of iron oxide nanoparticles into the polymeric ones increased their hydrodynamic diameter to at least 250 nm. A monoclonal antibody specific for a transmembranar protein (car-bonic anhydrase IX) present in solid tumors was developed by hybridoma technology. Functional hybridomas producing the desired monoclonal antibodies were obtained. The proposed theranostic system functionality was evaluated in separated parts of its components. Uncoated and coated iron oxide nanoparticles with chitosan-based polymers generated heat under the application of an external alternating magnetic field. Uncoated iron oxide nanoparticles sta-bilized with oleic acid were able to enhance contrast in magnetic resonance imaging. Drug deliv-ery studies were conducted in chitosan-based polymeric nanoparticles without and with the in-corporation of iron oxide nanoparticles, demonstrating to be an effective drug delivery platform for doxorubicin. The theranostic system proposed in this PhD thesis is very promising for cancer theranostic, demonstrating to be applicable in solid tumors such as osteosarcoma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The large spatial inhomogeneity in transmit B, field (B-1(+)) observable in human MR images at hi h static magnetic fields (B-0) severely impairs image quality. To overcome this effect in brain T-1-weighted images the, MPRAGE sequence was modified to generate two different images at different inversion times MP2RAGE By combining the two images in a novel fashion, it was possible to create T-1-weigthed images where the result image was free of proton density contrast, T-2* contrast, reception bias field, and, to first order transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B-1(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T-1-weighted images, acquired within 12 min, high-resolution 3D T-1 maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T-1 maps were validated in phantom experiments. In humans, the T, values obtained at 7 T were 1.15 +/- 0.06 s for white matter (WM) and 1.92 +/- 0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min the T-1 values obtained (0.81 +/- 0.03 S for WM and 1.35 +/- 0.05 for GM) were once again found to be in very good agreement with values in the literature. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The interaction between lipid disturbances and inflammatory markers is not well known in patients on antiretroviral therapy (ART). As nevirapine (NVP) is associated with a better lipid profile than efavirenz (EFV), we investigated the relationships between lipid profiles, lipoprotein subclasses and inflammatory biomarkers in patients with prolonged viral suppression with either NVP or EFV and no obvious clinical inflammation. Methods: 122 clinically stable HIV-infected patients with HIV-1 RNA <20 copies longer than 6 months on NNRTI therapy were studied. 72 (59%) were on EFV and 50 (41%) on NVP. Any potentially inflammatory co-morbid diseases (concurrent viral hepatitis, diabetes, hypertension, chronic liver or renal diseases), or statin treatment, were exclusion criteria. Inflammatory biomarkers included hsCRP, LpPLA2, sCD40L, IL-6, IL-8, t-PA, MCP-1, p-selectin and VCAM-1. Lipoprotein subclass measures (VLDL, LDL, IDL and HDL particle number and size) were obtained by the use of proton nuclear magnetic resonance spectroscopy. Results: 82% were male; median age 45 years. Median CD4 count 550/μL (IQR 324). Median time since HIV diagnosis 96 months (IQR 102) and accumulated time on ART 50 months (IQR 101). Patients on NVP had higher time since HIV diagnosis (126.9 [66.7] vs 91.3 [6.6] months, p=0.008) a prolonged time on ART (89.6 [54.6] vs 62.3 [52.2] months, p=0.01) and were older (47.7 vs 40.7 years, p=0.001) than those on EFV. NVP-treated patients presented increased HDL-c (55.8 [16] vs 48.8 [10.7] mg/dL, p=0.007) and apoA1 levels (153.4 [31.9] vs 141.5 [20.5] mg/dL, p=0.02), and reduced apoB/apoA1 ratio (0.68 [0.1] vs 0.61 [0.1], p=0.003) than EFV-treated patients. No differences in inflammatory markers or lipoprotein subclasses were found between NVP and EFV. In patients with extreme lipid values (less favorable: 75th percentiles of LDL, small/dense LDLp and small HDLp, or more favorable: HDL p75 and apoB/apoA1 ratio p25), no consistent differences in inflammatory biomarkers were found. Conclusions: Patients with prolonged viral suppression on NVP present significantly higher HDL and apoA1 levels and reduced apoB/apoA1 ratios than those on EFV, but no differences were found in lipoprotein particles nor inflammatory biomarkers. Relationships between lipid parameters and inflammatory biomarkers in NNRTItreated patients are complex and do not show a linear relationship in this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Surface magnetic resonance imaging (MRI) for aortic plaque assessment is limited by the trade-off between penetration depth and signal-to-noise ratio (SNR). For imaging the deep seated aorta, a combined surface and transesophageal MRI (TEMRI) technique was developed 1) to determine the individual contribution of TEMRI and surface coils to the combined signal, 2) to measure the signal improvement of a combined surface and TEMRI over surface MRI, and 3) to assess for reproducibility of plaque dimension analysis. METHODS AND RESULTS: In 24 patients six black blood proton-density/T2-weighted fast-spin echo images were obtained using three surface and one TEMRI coil for SNR measurements. Reproducibility of plaque dimensions (combined surface and TEMRI) was measured in 10 patients. TEMRI contributed 68% of the signal in the aortic arch and descending aorta, whereas the overall signal gain using the combined technique was up to 225%. Plaque volume measurements had an intraclass correlation coefficient of as high as 0.97. CONCLUSION: Plaque volume measurements for the quantification of aortic plaque size are highly reproducible for combined surface and TEMRI. The TEMRI coil contributes considerably to the aortic MR signal. The combined surface and TEMRI approach improves aortic signal significantly as compared to surface coils alone. CONDENSED ABSTRACT: Conventional MRI aortic plaque visualization is limited by the penetration depth of MRI surface coils and may lead to suboptimal image quality with insufficient reproducibility. By combining a transesophageal MRI (TEMRI) with surface MRI coils we enhanced local and overall image SNR for improved image quality and reproducibility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To evaluate the utility of inversion recovery with on-resonant water suppression (IRON) in combination with injection of the long-circulating monocrystalline iron oxide nanoparticle (MION)-47 for contrast material-enhanced magnetic resonance (MR) angiography. MATERIALS AND METhods: Experiments were approved by the institutional animal care committee. Eleven rabbits were imaged at baseline before injection of a contrast agent and then serially 5-30 minutes, 2 hours, 1 day, and 3 days after a single intravenous bolus injection of 80 micromol of MION-47 per kilogram of body weight (n = 6) or 250 micromol/kg MION-47 (n = 5). Conventional T1-weighted MR angiography and IRON MR angiography were performed on a clinical 3.0-T imager. Signal-to-noise and contrast-to-noise ratios were measured in the aorta of rabbits in vivo. Venous blood was obtained from the rabbits before and after MION-47 injection for use in phantom studies. RESULTS: In vitro blood that contained MION-47 appeared signal attenuated on T1-weighted angiograms, while characteristic signal-enhanced dipolar fields were observed on IRON angiograms. In vivo, the vessel lumen was signal attenuated on T1-weighted MR angiograms after MION-47 injection, while IRON supported high intravascular contrast by simultaneously providing positive signal within the vessels and suppressing background tissue (mean contrast-to-noise ratio, 61.9 +/- 12.4 [standard deviation] after injection vs 1.1 +/- 0.4 at baseline, P < .001). Contrast-to-noise ratio was higher on IRON MR angiograms than on conventional T1-weighted MR angiograms (9.0 +/- 2.5, P < .001 vs IRON MR angiography) and persisted up to 24 hours after MION-47 injection (76.2 +/- 15.9, P < .001 vs baseline). CONCLUSION: IRON MR angiography in conjunction with superparamagnetic nanoparticle administration provides high intravascular contrast over a long time and without the need for image subtraction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Multinuclear magnetic resonance spectroscopy and imaging require a radiofrequency probe capable of transmitting and receiving at the proton and non-proton frequencies. To minimize coupling between probe elements tuned to different frequencies, LC (inductor-capacitor) traps blocking current at the (1) H frequency can be inserted in non-proton elements. This work compares LC traps with LCC traps, a modified design incorporating an additional capacitor, enabling control of the trap reactance at the low frequency while maintaining (1) H blocking. METHODS: Losses introduced by both types of trap were analysed using circuit models. Radiofrequency coils incorporating a series of LC and LCC traps were then built and evaluated at the bench. LCC trap performance was then confirmed using (1) H and (13) C measurements in a 7T human scanner. RESULTS: LC and LCC traps both effectively block interaction between non-proton and proton coils at the proton frequency. LCC traps were found to introduce a sensitivity reduction of 5±2%, which was less than half of that caused by LC traps. CONCLUSION: Sensitivity of non-proton coils is critical. The improved trap design, incorporating one extra capacitor, significantly reduces losses introduced by the trap in the non-proton coil. Magn Reson Med 72:584-590, 2014. © 2013 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To develop and assess the diagnostic performance of a three-dimensional (3D) whole-body T1-weighted magnetic resonance (MR) imaging pulse sequence at 3.0 T for bone and node staging in patients with prostate cancer. MATERIALS AND METHODS This prospective study was approved by the institutional ethics committee; informed consent was obtained from all patients. Thirty patients with prostate cancer at high risk for metastases underwent whole-body 3D T1-weighted imaging in addition to the routine MR imaging protocol for node and/or bone metastasis screening, which included coronal two-dimensional (2D) whole-body T1-weighted MR imaging, sagittal proton-density fat-saturated (PDFS) imaging of the spine, and whole-body diffusion-weighted MR imaging. Two observers read the 2D and 3D images separately in a blinded manner for bone and node screening. Images were read in random order. The consensus review of MR images and the findings at prospective clinical and MR imaging follow-up at 6 months were used as the standard of reference. The interobserver agreement and diagnostic performance of each sequence were assessed on per-patient and per-lesion bases. RESULTS: The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were significantly higher with whole-body 3D T1-weighted imaging than with whole-body 2D T1-weighted imaging regardless of the reference region (bone or fat) and lesion location (bone or node) (P < .003 for all). For node metastasis, diagnostic performance (area under the receiver operating characteristic curve) was higher for whole-body 3D T1-weighted imaging (per-patient analysis; observer 1: P < .001 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P = .006 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging; observer 2: P = .006 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P = .006 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging), as was sensitivity (per-lesion analysis; observer 1: P < .001 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P < .001 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging; observer 2: P < .001 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P < .001 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging). CONCLUSION: Whole-body MR imaging is feasible with a 3D T1-weighted sequence and provides better SNR and CNR compared with 2D sequences, with a diagnostic performance that is as good or better for the detection of bone metastases and better for the detection of lymph node metastases.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proton NMR spectroscopy is emerging from translational and preclinical neuroscience research as an important tool for evidence based diagnosis and therapy monitoring. It provides biomarkers that offer fingerprints of neurological disorders even in cases where a lesion is not yet observed in MR images. The collection of molecules used as cerebral biomarkers that are detectable by (1)H NMR spectroscopy define the so-called "neurochemical profile". The non-invasive quality of this technique makes it suitable not only for diagnostic purposes but also for therapy monitoring paralleling an eventual neuroprotection. The application of (1)H NMR spectroscopy in basic and translational neuroscience research is discussed here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spherical carbon coated iron particles of nanometric diameter in the 510 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 58·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging MRI, hyperthermia).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite obvious improvements in spectral resolution at high magnetic field, the detection of 13C labeling by 1H-[13C] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of 1H resonances bound to C3 of glutamate (Glu) and glutamine (Gln), and C6 of N-acetylaspartate (NAA). The aim of this study was to develop, implement, and apply a novel 1H-[13C] NMR spectroscopic editing scheme, dubbed "selective Resonance suppression by Adiabatic Carbon Editing and Decoupling single-voxel STimulated Echo Acquisition Mode" (RACED-STEAM). The sequence is based on the application of two asymmetric narrow-transition-band adiabatic RF inversion pulses at the resonance frequency of the 13C coupled to the protons that need to be suppressed during the mixing time (TM) period, alternating the inversion band downfield and upfield from the 13C resonance on odd and even scans, respectively, thus suppressing the detection of 1H resonances bound to 13C within the transition band of the inversion pulse. The results demonstrate the efficient suppression of 1H resonances bound to C3 of Glu and Gln, and C4 of Glu, which allows the 1H resonances bound to C6 of NAA and C4 of Gln to be revealed. The measured time course of the resolved labeling into NAA C6 with the new scheme was consistent with the slow turnover of NAA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-center studies using magnetic resonance imaging facilitate studying small effect sizes, global population variance and rare diseases. The reliability and sensitivity of these multi-center studies crucially depend on the comparability of the data generated at different sites and time points. The level of inter-site comparability is still controversial for conventional anatomical T1-weighted MRI data. Quantitative multi-parameter mapping (MPM) was designed to provide MR parameter measures that are comparable across sites and time points, i.e., 1 mm high-resolution maps of the longitudinal relaxation rate (R1 = 1/T1), effective proton density (PD(*)), magnetization transfer saturation (MT) and effective transverse relaxation rate (R2(*) = 1/T2(*)). MPM was validated at 3T for use in multi-center studies by scanning five volunteers at three different sites. We determined the inter-site bias, inter-site and intra-site coefficient of variation (CoV) for typical morphometric measures [i.e., gray matter (GM) probability maps used in voxel-based morphometry] and the four quantitative parameters. The inter-site bias and CoV were smaller than 3.1 and 8%, respectively, except for the inter-site CoV of R2(*) (<20%). The GM probability maps based on the MT parameter maps had a 14% higher inter-site reproducibility than maps based on conventional T1-weighted images. The low inter-site bias and variance in the parameters and derived GM probability maps confirm the high comparability of the quantitative maps across sites and time points. The reliability, short acquisition time, high resolution and the detailed insights into the brain microstructure provided by MPM makes it an efficient tool for multi-center imaging studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.