945 resultados para Protein structures
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.
Resumo:
Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets × 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNF? protein expression, and IKKSer180/181 and p38MAPK Thr180/Tyr182 phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNF? and IKK Ser180/181. There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). AktSer473 and mTORSer2448 phosphorylation were unchanged throughout RT. Phosphorylation of p70S6k Thr389 increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6Ser235/236 increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.
Resumo:
In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.
Resumo:
Application of `advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A series of large-scale tests were performed in order to provide experimental results for verification of the new analytical models. Each of the test frames comprised non-compact sections, and exhibited significant local buckling behaviour prior to failure. This paper presents details of the test program including the test specimens, set-up and instrumentation, procedure, and results.
Resumo:
Background Recurrent protracted bacterial bronchitis (PBB), chronic suppurative lung disease (CSLD) and bronchiectasis are characterised by a chronic wet cough and are important causes of childhood respiratory morbidity globally. Haemophilus influenzae and Streptococcus pneumoniae are the most commonly associated pathogens. As respiratory exacerbations impair quality of life and may be associated with disease progression, we will determine if the novel 10-valent pneumococcal-Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) reduces exacerbations in these children. Methods A multi-centre, parallel group, double-blind, randomised controlled trial in tertiary paediatric centres from three Australian cities is planned. Two hundred six children aged 18 months to 14 years with recurrent PBB, CSLD or bronchiectasis will be randomised to receive either two doses of PHiD-CV or control meningococcal (ACYW(135)) conjugate vaccine 2 months apart and followed for 12 months after the second vaccine dose. Randomisation will be stratified by site, age (<6 years and >= 6 years) and aetiology (recurrent PBB or CSLD/bronchiectasis). Clinical histories, respiratory status (including spirometry in children aged >= 6 years), nasopharyngeal and saliva swabs, and serum will be collected at baseline and at 2, 3, 8 and 14 months post-enrolment. Local and systemic reactions will be recorded on daily diaries for 7 and 30 days, respectively, following each vaccine dose and serious adverse events monitored throughout the trial. Fortnightly, parental contact will help record respiratory exacerbations. The primary outcome is the incidence of respiratory exacerbations in the 12 months following the second vaccine dose. Secondary outcomes include: nasopharyngeal carriage of H. influenzae and S. pneumoniae vaccine and vaccine-related serotypes; systemic and mucosal immune responses to H. influenzae proteins and S. pneumoniae vaccine and vaccine-related serotypes; impact upon lung function in children aged >= 6 years; and vaccine safety. Discussion As H. influenzae is the most common bacterial pathogen associated with these chronic respiratory diseases in children, a novel pneumococcal conjugate vaccine that also impacts upon H. influenzae and helps prevent respiratory exacerbations would assist clinical management with potential short- and long-term health benefits. Our study will be the first to assess vaccine efficacy targeting H. influenzae in children with recurrent PBB, CSLD and bronchiectasis.
Resumo:
Both cyclooxygenase (COX)-2 and epidermal growth factor receptor (EGFR) are thought to play important roles in the pathogenesis of non-small cell lung cancer (NSCLC). A number of in vitro studies have postulated a link between EGFR activation and subsequent COX-2 upregulation. The relationship between these factors has not been established in patients with NSCLC. COX-2 and EGFR expression were studied in 172 NSCLC specimens using standard immunohistochemical techniques. Western blotting was used to determine COX-2 and EGFR levels in five NSCLC cell lines. The effect of treatment with EGF on COX-2 expression in A549 cells was assessed. Results: Both EGFR and COX-2 are overexpressed in NSCLC. The predominant pattern of COX-2 and EGFR staining was cytoplasmic. Membranous EGFR staining was seen in 23.3% of cases. There was no relationship between COX-2 and EGFR expression and survival or any clinicopathological features. No correlation was seen between EGFR expression and COX-2 expression in the immunohistochemical series or in the cell lines. Treatment with EGF did not upregulate COX-2 levels in A549 cells, either in serum free or serum-supplemented conditions. Conclusions: Although COX-2 and EGFR are over-expressed in NSCLC neither was of prognostic significance in this series of cases. There is no correlation between these two factors in either tumour samples or cell lines. Although these factors show no correlation in NSCLC, they remain potential, though independent targets for treatment. © 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This thesis examined the possible role of Y-box binding protein 1 (YBX1) in prostate cancer aggression and spread. Novel roles were uncovered for YBX1 in the regulation of several genes previously implicated in prostate cancer, as well as showing an effect for YBX1 in increasing tumour cell invasion and movement and reciprocal regulation of androgen-regulated gene networks. In addition, it was found that Y-box 1 regulated several other well-known cancer genes implicated in breast and other cancers. The work performed in this thesis has strengthened the foundations for pursuing YBX1 as a possible central target molecule in prostate cancer therapeutics.
Resumo:
In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles.
Resumo:
The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18:1 to elongation reactions beginning with 18:1 as substrate. These V2-based leaf assays produced ~50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. © 2012 Naim et al.