980 resultados para Protein concentrations
Resumo:
Background and Purpose - Epidemiological and laboratory studies suggest that increasing concentrations of plasma homocysteine ( total homocysteine [tHcy]) accelerate cardiovascular disease by promoting vascular inflammation, endothelial dysfunction, and hypercoagulability. Methods - We conducted a randomized controlled trial in 285 patients with recent transient ischemic attack or stroke to examine the effect of lowering tHcy with folic acid 2 mg, vitamin B-12 0.5 mg, and vitamin B-6 25 mg compared with placebo on laboratory markers of vascular inflammation, endothelial dysfunction, and hypercoagulability. Results - At 6 months after randomization, there was no significant difference in blood concentrations of markers of vascular inflammation (high-sensitivity C-reactive protein [P = 0.32]; soluble CD40L [ P = 0.33]; IL-6 [P = 0.77]), endothelial dysfunction ( vascular cell adhesion molecule-1 [P = 0.27]; intercellular adhesion molecule-1 [P = 0.08]; von Willebrand factor [P = 0.92]), and hypercoagulability (P-selectin [P = 0.33]; prothrombin fragment 1 and 2 [P = 0.81]; D-dimer [P = 0.88]) among patients assigned vitamin therapy compared with placebo despite a 3.7-mumol/L (95% CI, 2.7 to 4.7) reduction in total homocysteine (tHcy). Conclusions - Lowering tHcy by 3.7 mumol/L with folic acid-based multivitamin therapy does not significantly reduce blood concentrations of the biomarkers of inflammation, endothelial dysfunction, or hypercoagulability measured in our study. The possible explanations for our findings are: ( 1) these biomarkers are not sensitive to the effects of lowering tHcy (eg, multiple risk factor interventions may be required); ( 2) elevated tHcy causes cardiovascular disease by mechanisms other than the biomarkers measured; or ( 3) elevated tHcy is a noncausal marker of increased vascular risk.
Resumo:
BACKGROUND: Amaranth is a little-known culture in Brazilian agriculture. Amaranthus cruentus BRS Alegria was the first cultivar recommended by Embrapa for the soil of the Brazilian scrubland. In order to evaluate the potential of this species in the production of flour, starch and protein concentrates, the latter products were obtained from A. cruentus BRS Alegria seeds, characterized and compared with the products obtained from the A. caudatus species cultivated in its soil of origin. RESULTS: The seeds of A. cruentus BRS Alegria furnished high-purity starch and flour with significant content of starch, proteins, and lipids. The starch and flour of this species presented higher gelatinization temperatures and formed stronger gels upon cooling compared with those obtained from the A. caudatus species. This is due to their greater amylose content and a difference in the composition of the more important fatty acids, such as stearic, oleic and linoleic acids, which indicates that they have greater heat stability. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetry revealed the presence of albumins, globulins, glutelins and prolamins in the protein concentrate, which was obtained as a byproduct of starch production. CONCLUSION: Amaranthus cruentus BRS Alegria has potential application in the production of flour, starch and protein concentrates, with interesting characteristics for use as food ingredients. (C) 2010 Society of Chemical Industry
Resumo:
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10degreesC by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG = 2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding I measured by stopped-flow circular dichroism. rate of less than 4 min(-1) The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E. coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The aims of this study were to examine the plasma concentrations of inflammatory mediators including cytokines induced by a single bout of eccentric exercise and again 4 weeks later by a second bout of eccentric exercise of the same muscle group. Ten untrained male subjects performed two bouts of the eccentric exercise involving the elbow flexors (6 sets of 5 repetitions) separated by four weeks. Changes in muscle soreness, swelling, and function following exercise were compared between the bouts. Blood was sampled before, immediately after, 1 h, 3 h, 6 h, 24 h (1 d), 48 h (2 d), 72 h (3 d), 96 h (4 d) following exercise bout to measure plasma creatine kinase (CK) activity, plasma concentrations of myoglobin (Mb), interleukin (IL)-1 beta, IL-1 receptor antagonist (IL-1ra), IL-4, IL-6, IL-8, IL-10, IL-12p40, tumor necrosis factor (TNF)-alpha, granulocyte colony-stimulating factor (G-CSF), myeloperoxidase (MPO), prostaglandin E-2 (PGE(2)), heat shock protein (HSP) 60 and 70. After the first bout, muscle soreness increased significantly, and there was also significant increase in upper arm circumference; muscle function decreased and plasma CK activity and Mb concentration increased significantly. These changes were significantly smaller after the second bout compared to the first bout, indicating muscle adaptation to the repeated bouts of the eccentric exercise. Despite the evidence of greater muscle damage after the first bout, the changes in cytokines and other inflammatory mediators were quite minor, and considerably smaller than that following endurance exercise. These results suggest that eccentric exercise-induced muscle damage is not associated with the significant release of cytokines into the systemic circulation. After the first bout, plasma G-CSF concentration showed a small but significant increase, whereas TNF-alpha and IL-8 showed significant decreases compared to the pre-exercise values. After the second bout, there was a significant increase in IL-10, and a significant decrease in IL-8. In conclusion, although there was evidence of severe muscle damage after the eccentric exercise, this muscle damage was not accompanied by any large changes in plasma cytokine concentrations. The minor changes in systemic cytokine concentration found in this study might reflect more rapid clearance from the circulation, or a lack of any significant metabolic or oxidative demands during this particular mode of exercise. In relation to the adaptation to the muscle damage, the anti-inflammatory cytokine IL-10 might work as one of the underlying mechanisms of action.
Resumo:
Protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of this work was to investigate the effects of postnatal protein malnutrition on learning and memory tasks. Previously malnourished (6% protein) and well-nourished rats (16% protein) were tested in three experiments: working memory tasks in the Morris water maze (Experiment I), recognition memory of objects (Experiment II), and working memory in the water T-maze (Experiment III). The results showed higher escape latencies in malnourished animals in Experiment I, lower recognition indexes of malnourished animals in Experiment II, and no differences due to diet in Experiment III. It is suggested that protein malnutrition imposed on early life of rats can produce impairments on both working memory in the Morris maze and recognition memory in the open field tests.
Resumo:
Adequate substitutes for pollen are necessary for maintaining healthy bee colonies during periods of pollen dearth, but testing them objectively is both time consuming and expensive. We compared two commercial diets with bee collected pollen and acacia pod flour (used by beekeepers in some parts of Brazil) by measuring their effect on haemolymph protein contents of young bees exclusively fed on these diets, which is a fast and inexpensive assay. The commercial diets included a new, non-soy-based, pollen substitute diet (named Feed-Bee (R)) and a soy-based diet, named Bee-Pro (R). The diets were each given in patty form to groups of 100 Africanized honey bees in hoarding cages, maintained and fed from emergence until six days of age. Sucrose, in the form of sugar syrup, was used as a protein free control. Feed-Bee (R), Bee-Pro (R), pollen and acacia pod flour diets increased protein titers in the haemolymph by factors of 2.65, 2.51, 1.76 and 1.69, respectively, over protein titers in bees fed only sucrose solution. The bees fed Feed-Bee (R) and Bee-Pro (R) had their haemolymph significantly enriched in protein compared to the controls and those fed acacia pod flour and to titers slightly higher than those fed pollen. All four proteinaceous diets were significantly superior to sucrose alone.
Resumo:
Chang S, Gomes CM, Hypolite JA, Marx J, Alanzi J, Zderic SA, Malkowicz B, Wein AJ, Chacko S. Detrusor overactivity is associated with downregulation of large-conductance calcium-and voltage-activated potassium channel protein. Am J Physiol Renal Physiol 298: F1416-F1423, 2010. First published April 14, 2010; doi: 10.1152/ajprenal.00595.2009.-Large-conductance voltage-and calcium-activated potassium (BK) channels have been shown to play a role in detrusor overactivity (DO). The goal of this study was to determine whether bladder outlet obstructioninduced DO is associated with downregulation of BK channels and whether BK channels affect myosin light chain 20 (MLC(20)) phosphorylation in detrusor smooth muscle (DSM). Partial bladder outlet obstruction (PBOO) was surgically induced in male New Zealand White rabbits. The rabbit PBOO model shows decreased voided volumes and increased voiding frequency. DSM from PBOO rabbits also show enhanced spontaneous contractions compared with control. Both BK channel alpha- and beta-subunits were significantly decreased in DSM from PBOO rabbits. Immunostaining shows BK beta mainly expressed in DSM, and its expression is much less in PBOO DSM compared with control DSM. Furthermore, a translational study was performed to see whether the finding discovered in the animal model can be translated to human patients. The urodynamic study demonstrates several overactive DSM contractions during the urine-filling stage in benign prostatic hyperplasia (BPH) patients with DO, while DSM is very quiet in BPH patients without DO. DSM biopsies revealed significantly less BK channel expression at both mRNA and protein levels. The degree of downregulation of the BK beta-subunit was greater than that of the BK alpha-subunit, and the downregulation of BK was only associated with DO, not BPH. Finally, the small interference (si) RNA-mediated downregulation of the BK beta-subunit was employed to study the effect of BK depletion on MLC(20) phosphorylation. siRNA-mediated BK channel reduction was associated with an increased MLC(20) phosphorylation level in cultured DSM cells. In summary, PBOO-induced DO is associated with downregulation of BK channel expression in the rabbit model, and this finding can be translated to human BPH patients with DO. Furthermore, downregulation of the BK channel may contribute to DO by increasing the basal level of MLC(20) phosphorylation.
Resumo:
Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G > A and c.707T > C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.
Resumo:
OBJECTIVE- To determine whether obesity increases platelet reactivity and thrombin activity in patients with type 2 diabetes plus stable coronary artery disease. RESEARCH DESIGN AND METHODS- We assessed platelet reactivity and markers of thrombin generation and activity in 193 patients from nine clinical sites of the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Blood taken at the time of enrollment was used for assay of the concentration of prothrombin fragment 1.2 (PT1.2, released when prothrombin is activated) and fibrinopeptide A (FPA, released when fibrinogen is cleaved). Platelet activation was identified with the use of flow cytometry in response to 0, 0.2, and 1 mu mol/l adenosine diphosphate (ADP). RESULTS- Concentrations of FPA, PT1.2, and platelet activation in the absence of agonist were low. Greater BMI was associated with higher platelet reactivity in response to 1 mu m ADP as assessed by surface expression of P-selectin (r = 0.29, P < 0.0001) but not reflected by the binding of fibrinogen to activated glycoprotein IIb-IIIa. BMI was not associated with concentrations of FPA or PT1.2. Platelet reactivity correlated negatively with A1C (P < 0.04), was not related to the concentration Of triglycerides in blood, and did not correlate with the concentration of C-reactive peptide. CONCLUSIONS- Among patients enrolled in this substudy of BARI 2D, a greater BMI was associated with higher platelet reactivity at the time of enrollment. Our results suggest that obesity and insulin resistance that accompanies obesity may influence platelet reactivity in patients with type 2 diabetes.
Resumo:
This study presents the possibilities offered by microfluidic structures for the production of polymeric microspheres, using a process based upon the production of an emulsion. LTCC (Low Temperature Co-fired Ceramics) micromixers have been used for the preparation of polymeric microspheres. The effect of the geometry of the micromixers has been studied, with a specific focus on the size of the microspheres. as well as the control release properties of a model protein loaded within these microspheres. (C) 2008 Published by Elsevier B.V.
Resumo:
The purpose of the present substudy of the Lipid Treatment Assessment Project 2 was to assess dual C-reactive protein (CRP) and low-density lipoprotein (LDL) cholesterol goal attainment across a spectrum of low-, moderate-, and high-risk patients with dyslipidemia in 8 countries in North America, Latin America, Europe, and Asia. Of the 9,518 patients studied overall, 45% were women, 64% had hypertension, 31% had diabetes, 14% were current smokers, 60% were high risk, and 79% were taking a statin. The median CRP level was 1.5 mg/L (interquartile range 0.2 to 2.8). On multivariate analysis, higher CRP levels were associated with older age, female gender, hypertension, current smoking, greater body mass index, larger waist circumference, LDL cholesterol level, and triglyceride/high-density lipoprotein cholesterol ratio. In contrast, being from Asia or taking a statin was associated with lower levels. Across all risk groups, 59% of patients attained the CRP target of <2 mg/L, and 33% had <1 mg/L. Overall, 44% of patients attained both their National Cholesterol Education Program Adult Treatment Panel III LDL cholesterol target and a CRP level of <2 mg/L, but only 26% attained their LDL cholesterol target and a CRP level of <1 mg/L. In the very high-risk group with coronary heart disease and >= 2 risk factors, only 19% attained both their LDL cholesterol goal and a CRP level of <2 mg/L and 12% their LDL cholesterol goal and a CRP level of <1 mg/L. In conclusion, with current treatment, most dyslipidemic patients do not reach the dual CRP and LDL cholesterol goals. Smoking cessation, weight reduction, and the greater use of more potent statins at higher doses might be able to improve these outcomes. (C) 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;107:1639-1643)