913 resultados para Protein Subunits -- chemistry -- metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The syndrome of cancer cachexia is accompanied by several alterations in lipid metabolism, and the liver is markedly affected. Previous Studies showed that moderate exercise training may prevent liver fill accumulation through diminished delivery of lipids to the liver, increased hepatic oxidation and increased incorporation of triacylglycerol (TAG) into very low density lipoprotein (VLDL). Our aim was to examine the influence of moderate intensity training (8 weeks) upon TAG content, VLDL assembly and secretion, apolipoprotein B (apoB) and microsomal transfer protein (MTP) gene expression in the liver of cachectic tumour-bearing rats. Animals were randomly assigned to a sedentary control (SC), sedentary tumour-bearing (ST) or exercise-trained control (EC) or to all exercise trained tumour-bearing (ET) group. Trained rats ran on a treadmill (60% VO2max) for 60 min day(-1), 5 day week(-1), for 8 weeks. TAG content and the rate of VLDL secretion (followed for 3 h), its well its mRNA expression of apoB and MTP, and total cholesterol, VLDL-TAG, VLDL-cholesterol, high density lipoprotein cholesterol (HDL-cholesterol) and tumor weight were evaluated. VLDL-cholesterol showed a decrease in ST (p < 0.05) in relation to SC. Serum TAG, VLDL-TAG and tissue TAG content were all increased in ST (p < 0.01), when compared with SC. ST showed a lower rate of VLDL secretion (p < 0.05) and reduced expression of apoB (p < 0.001) and MTP (p < 0.001), when compared with SC. These parameters were restored to control values (p < 0.05) when the animals were submitted to the exercise training protocol. Tumour weight decreased 10-fold after training (p < 0.001). It is possible to affirm, therefore, that endurance training promoted the re-establishment of lipid metabolism in cachectic tumour-bearing animals, especially in relation to VLDL secretion and assembly. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endurance exercise is known to enhance peripheral insulin sensitivity and reduce insulin secretion. However, it is unknown whether the latter effect is due to the reduction in plasma substrate availability or alterations in beta-cell secretory machinery. Here, we tested the hypothesis that endurance exercise reduces insulin secretion by altering the intracellular energy-sensitive AMP-activated kinase (AMPK) signaling pathway. Male Wistar rats were submitted to endurance protocol training one, three, or five times per week, over 8 weeks. After that, pancreatic islets were isolated, and glucose-induced insulin secretion (GIIS), glucose transporter 2 (GLUT2) protein content, total and phosphorylated calmodulin kinase kinase (CaMKII), and AMPK levels as well as peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1 alpha) and uncoupling protein 2 (UCP2) content were measured. After 8 weeks, chronic endurance exercise reduced GIIS in a dose-response manner proportionally to weekly exercise frequency. Contrariwise, increases in GLUT2 protein content, CaMKII and AMPK phosphorylation levels were observed. These alterations were accompanied by an increase in UCP2 content, probably mediated by an enhancement in PGC-1 alpha protein expression. In conclusion, chronic endurance exercise induces adaptations in beta-cells leading to a reduction in GIIS, probably by activating the AMPK signaling pathway. Journal of Endocrinology (2011) 208, 257-264

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of endurance training on PGE(2) levels and upon the maximal activity of hepatic carnitine palmitoyltransferase (CPT) system were studied in rats bearing the Walker 256 carciosarcoma. Animals were randomly assigned to a sedentary control (SC), sedentary tumor-bearing (ST), exercised control (EC), and as an exercised tumor-bearing (ET) group. Trained rats ran on a treadmill (60% VO(2) max) for 60 min/day, 5 days/week, for 8 weeks. We examined the mRNA expression (RT-PCR) and maximal activity (radio-assay) of the carnitine palmitoyltransferase system enzymes (CPT I and CPT II), as well as the gene expression of fatty-acid-binding protein (L-FABP) in the liver. PGE(2) content was measured in the serum, in tumor cells, and in the liver (ELISA). CPT I and CPT II maximal activity were decreased (p < 0.01) in ST when compared with SC. In contrast, serum PGE(2) was increased (p < 0.05) in cachectic animals as compared with SC. In the liver, PGE(2) content was also increased (p < 0.05) when compared with SC. Endurance training restored maximal CPT I and CPT II activity in the tumor-bearing animals (p < 0.0001). Exercise training induced PGE(2) levels to return to control values in the liver of tumor-bearing training rats (p < 0.05) and decreased the eicosanoid content in the tumor (p < 0.01). In conclusion, endurance training was capable of reestablishing liver carnitine palmitoyltransferase (CPT) system activity associated with decreased PGE(2) levels in cachectic tumor-bearing animals, preventing steatosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-protein diet impairs insulin secretion in response to nutrients and may induce several metabolic disorders including diabetes, obesity, and cardiovascular disease. In the present study, the influence of leucine supplementation on glutamate dehydrogenase (GDH) expression and glucose-induced insulin secretion (GIIS) was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal-protein diet (17%) without or with leucine supplementation or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine (1.5%) was supplied in the drinking water. Western blotting analysis revealed reduced GIN! expression in LP, whereas LPL displayed improved GDH expression, similar to control. The GHS and leucinc-induced insulin release were also enhanced in LPL compared with LP and similar to those observed in rats fed a normal-protein diet without leucine supplementation. In addition, GDH allosteric activators produced an increased insulin secretion in LPL. These findings indicate that leucine supplementation was able to increase GDH expression leading to Cl IS restoration, probably by improved leucine metabolic pathways. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important role in protein-energy metabolism has been attributed to leucine because of its long-term effects on body fat reduction and on the improvement of some indicators of protein status in rodents. The present study investigated the influence of leucine supplementation on the body composition and protein status of rats during the early phase of weight loss, which is characterized by a rapid loss of body weight. Thirty adult male Wistar rats were divided into 2 groups, a control and a leucine group (diet supplemented with 0.59% L-leucine), and were submitted to 1 week of 50% food restriction. The following parameters were evaluated: chemical carcass composition, protein and RNA content in liver and gastrocnemius muscle, and serum concentrations of insulin-like growth factor-1 and corticosterone. A higher liver weight and liver protein content were observed in the supplemented group (p < 0.05). However, no difference in body fat was found between groups (p > 0.05). The results indicate that low-dose leucine supplementation favors liver protein status but does not reduce body fat in rats during the early phase of rapid weight loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of morphology and coating of metal surfaces is essential for a number of organic electronic devices including photovoltaic cells and sensors. In this study, we monitor the functionalization of gold surfaces with 11-mercaptoundecanoic acid (MUA, HS(CH(2))(10)CO(2)H) and cysteamine, aiming at passivating the surfaces for application in surface plasmon resonance (SPR) biosensors. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), cyclic voltammetry, atomic force microscopy and quartz crystal microbalance, we observed a time-dependent organization process of the adsorbed MUA monolayer with alkyl chains perpendicular to the gold surface. Such optimized condition for surface passivation was obtained with a systematic search for experimental parameters leading to the lowest electrochemical signal of the functionalized gold electrode. The ability to build supramolecular architectures was also confirmed by detecting with PM-IRRAS the adsorption of streptavidin on the MUA-functionalized gold. As the approaches used for surface functionalization and its verification with PM-IRRAS are generic, one may now envisage monitoring the fabrication of tailored electrodes for a variety of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of natural substances in health applications may be hampered by the difficulties in establishing the mechanisms of action, especially at molecular-level. The protein-polysaccharide complex extracted from the mushroom Agaricus blazei Murill, referred to as CAb, has been considered for treating various diseases with probable interaction with cell membranes. In this study, we investigate the interaction between CAb and a cell membrane model represented by a Langmuir monolayer of dimyristoyl phosphatidic acid (DMPA). CAb affects the structural properties of DMPA monolayers causing expansion and increasing compressibility. In addition, interaction with DMPA polar heads led to neutralization of the electrical double layer, yielding a zero surface potential at large areas per molecule. CAb remained at the interface even at high surface pressures, which allowed transfer of Langmuir-Blodgett (LB) films onto solid supports with the CAb-DMPA mixture. The mass transferred, according to quartz crystal microbalance (QCM) measurements, increased linearly with the number of deposited layers. With UV-vis absorption, fluorescence and FTIR spectroscopies, we confirmed that the LB films contain polysaccharides, proteins and DMPA. Therefore, the CAb biological action must be attributed not only to polysaccharides but also to proteins in the complex. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thyroid hormone receptors (TR) are hormone-dependent transcription regulators that play a major role in human health, development, and metabolic functions. The thyroid hormone resistance syndrome, diabetes, obesity, and some types of cancer are just a few examples of important diseases that are related to TR malfunctioning, particularly impaired hormone binding. Ligand binding to and dissociation from the receptor ultimately control gene transcription and, thus, detailed knowledge of binding and release mechanisms are fundamental for the comprehension of the receptor`s biological function and development of pharmaceuticals. In this work, we present the first computational study of ligand entry into the ligand binding domain (LBD) of a nuclear receptor. We report molecular dynamics simulations of ligand binding to TRs using a generalization of the steered molecular dynamics technique designed to perform single-molecule pulling simulations along arbitrarily nonlinear driving pathways. We show that only gentle protein movements and conformational adaptations are required for ligand entry into the LBDs and that the magnitude of the forces applied to assist ligand binding are of the order of the forces involved in ligand dissociation. Our simulations suggest an alternative view for the mechanisms ligand binding and dissociation of ligands from nuclear receptors in which ligands can simply diffuse through the protein surface to reach proper positioning within the binding pocket. The proposed picture indicates that the large-amplitude protein motions suggested by the apo- and holo-RXR alpha crystallographic structures are not required, reconciling conformational changes of LBDs required for ligand entry with other nuclear receptors apo-structures that resemble the ligand-bound LBDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cationic supported bilayers on latex are useful to isolate and immobilize oppositely charged proteins as a monomolecular layer over a range of low protein concentrations and particle number densities. Cholera toxin (CT) from Vibrio cholerae, an 87 kDa AB(5) hexameric protein and bovine serum albumin (BSA) self-assembled on dioctadecyldimethylammonium bromide (DODAB) supported bilayers with high affinity yielding highly organized and monodisperse particulates at 5 x 10(9) particles/mL, over a range of low protein concentrations (0-0.025 mg/mL BSA or CT). Protein association onto the bilayer-covered polystyrene sulfate (PSS) was determined from adsorption isotherms, dynamic light scattering for size distributions and zeta-potential analysis revealing a monomolecular, thin and highly organized protein layer surrounding each particle with potential for biospecific recognition such as antigen-antibody, receptor-ligand, hybridization of oligonucleotide sequences, all of them important in immunodiagnosis, selective biomolecular chromatographic separations, microarrays design and others.