945 resultados para Protéine kinase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which herbivore-attacked plants activate their defenses are well studied. By contrast, little is known about the regulatory mechanisms that allow them to control their defensive investment and avoid a defensive overshoot. We characterized a rice (Oryza sativa) WRKY gene, OsWRKY53, whose expression is rapidly induced upon wounding and induced in a delayed fashion upon attack by the striped stem borer (SSB) Chilo suppressalis. The transcript levels of OsWRKY53 are independent of endogenous jasmonic acid but positively regulated by the mitogen-activated protein kinases OsMPK3/OsMPK6. OsWRKY53 physically interacts with OsMPK3/OsMPK6 and suppresses their activity in vitro. By consequence, it modulates the expression of defensive, MPK-regulated WRKYs and thereby reduces jasmonic acid, jasmonoyl-isoleucine, and ethylene induction. This phytohormonal reconfiguration is associated with a reduction in trypsin protease inhibitor activity and improved SSB performance. OsWRKY53 is also shown to be a negative regulator of plant growth. Taken together, these results show that OsWRKY53 functions as a negative feedback modulator of MPK3/MPK6 and thereby acts as an early suppressor of induced defenses. OsWRKY53 therefore enables rice plants to control the magnitude of their defensive investment during early signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Endometriosis, the growth of endometrial tissue outside the uterine cavity, is associated with chronic pelvic pain, subfertility and an increased risk of ovarian cancer. Current treatments include the surgical removal of the lesions or the induction of a hypoestrogenic state. However, a reappearance of the lesion after surgery is common and a hypoestrogenic state is less than optimal for women of reproductive age. Additional approaches are required. Endometriosis lesions exist in a unique microenvironment characterized by increased concentrations of hormones, inflammation, oxidative stress and iron. This environment influences cell survival through the binding of membrane receptors and a subsequent cascading activation of intracellular kinases that stimulate a cellular response. Many of these kinase signalling pathways are constitutively activated in endometriosis. These pathways are being investigated as therapeutic targets in other diseases and thus may also represent a target for endometriosis treatment. METHODS To identify relevant English language studies published up to 2015 on kinase signalling pathways in endometriosis, we searched the Pubmed database using the following search terms in various combinations; 'endometriosis', 'inflammation', 'oxidative stress', 'iron', 'kinase', 'NF kappa', 'mTOR', 'MAPK' 'p38', 'JNK', 'ERK' 'estrogen' and progesterone'. Further citing references were identified using the Scopus database and finally current clinical trials were searched on the clinicaltrials.gov trial registry. RESULTS The current literature on intracellular kinases activated by the endometriotic environment can be summarized into three main pathways that could be targeted for treatments: the canonical IKKβ/NFκB pathway, the MAPK pathways (ERK1/2, p38 and JNK) and the PI3K/AKT/mTOR pathway. A number of pharmaceutical compounds that target these pathways have been successfully trialled in in vitro and animal models of endometriosis, although they have not yet proceeded to clinical trials. The current generation of kinase inhibitors carry a potential for adverse side effects. CONCLUSIONS Kinase signalling pathways represent viable targets for endometriosis treatment. At present, however, further improvements in clinical efficacy and the profile of adverse effects are required before these compounds can be useful for long-term endometriosis treatment. A better understanding of the molecular activity of these kinases, including the specific extracellular compounds that lead to their activation in endometriotic cells specifically should facilitate their improvement and could potentially lead to new, non-hormonal treatments of endometriosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the in vitro effects of the bumped kinase inhibitor 1294 (BKI-1294) in cultures of virulent Neospora caninum isolates Nc-Liverpool (Nc-Liv) and Nc-Spain7 and in two strains of Toxoplasma gondii (RH and ME49), all grown in human foreskin fibroblasts. In these parasites, BKI-1294 acted with 50% inhibitory concentrations (IC50s) ranging from 20 nM (T. gondii RH) to 360 nM (N. caninum Nc-Liv), and exposure of intracellular stages to 1294 led to the nondisjunction of newly formed tachyzoites, resulting in the formation of multinucleated complexes similar to complexes previously observed in BKI-1294-treated N. caninum beta-galactosidase-expressing parasites. However, such complexes were not seen in a transgenic T. gondii strain that expressed CDPK1 harboring a mutation (G to M) in the gatekeeper residue. In T. gondii ME49 and N. caninum Nc-Liv, exposure of cultures to BKI-1294 resulted in the elevated expression of mRNA coding for the bradyzoite marker BAG1. Unlike in bradyzoites, SAG1 expression was not repressed. Immunofluorescence also showed that these multinucleated complexes expressed SAG1 and BAG1 and the monoclonal antibody CC2, which binds to a yet unidentified bradyzoite antigen, also exhibited increased labeling. In a pregnant mouse model, BKI-1294 efficiently inhibited vertical transmission in BALB/c mice experimentally infected with one of the two virulent isolates Nc-Liv or Nc-Spain7, demonstrating proof of concept that this compound protected offspring from vertical transmission and disease. The observed deregulated antigen expression effect may enhance the immune response during BKI-1294 therapy and will be the subject of future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various Moloney murine sarcoma virus (Mo-MuSV) isolates contain a cellular sequence, termed mos, which is responsible for the transforming ability of Mo-MuSV. A serine kinase activity has been found to be associated with mos gene products of several isolates of Mo-MuSV. A mutant of Mo-MuSV strain 124 (designated MuSV ts110) is temperature-sensitive (ts) for transformation and encodes two proteins, P85('gag-mos) (an 85,000 M(,r) protein encoded by the gag and mos genes) and P58('gag), at the permissive temperature (28(DEGREES)C). At the nonpermissive temperature (39(DEGREES)C), only P58('gag) is found in MuSV ts110-infected NRK cells (6m2 cells). Both P85('gag-mos) and P58('gag) were phosphorylated when anti-gag immune complexes containing these proteins were incubated at 22(DEGREES)C with (lamda)-('32)P -ATP and MnCl(,2). The kinase detected in anti-gag complexes from 6m2 cells at permissive temperature was associated with P85('gag-mos) since immune complexes from 39(DEGREES)C 6m2 cells, which lack P85('gag-mos), produced no phosphorylated P58('gag) molecules. In addition, an anti-mos complex (anti-mos 37-55 complexes) allowed in vitro phosphorylation of P85('gag-mos) in the absence of P58('gag). No kinase activity was detectable with other gag gene products (e.g., Mo-MuSV-124 P62('gag)), suggesting that the P85('gag-mos) kinase activity was present within the mos portion of the protein. The P85('gag-mos) kinase activity was very thermolabile upon shifting 6m2 cells from permissive to nonpermissive temperatures (t(, 1/2) for inactivation = 5 min). In contrast, a spontaneous revertant of MuSV ts110 encodes a larger gag-mos protein (termed P100('gag-mos)) which contained a kinase activity stable to 39(DEGREES)C. Using the optimal conditions developed for the P85('gag-mos) kinase, Mo-MuSV-encoded p37('mos) was also found to be associated with a serine kinase activity. Phosphorylation of p37('mos) and a 43 Kd protein (super-phosphorylated p37('mos)) occurred in anti-mos(37-55) complexes from Mo-MuSV-124 acutely-infected NIH 3T3 cells, but neither in mos 37-55 peptide-blocked anti-mos(37-55) complexes nor in immune complexes from uninfected NIH 3T3 cells. Antibodies directed against the C-terminus of v-mos were found to inhibit the in vitro phosphorylation of p37('mos), suggesting that the extreme C-terminal sequence of v-mos may be important for an intrinsic kinase activity. This inhibitory action by antibodies to the C-terminus of p37('mos), when considered with all the other data reported here, provides convincing evidence that the v-mos gene encodes a serine protein kinase activity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copines, named and first described by Creutz et al. (1998), comprise a two C2 domain-containing protein family that can aggregate phosphatidylserine membranes in a calcium-dependent manner. Although no enzymatic function has been attributed to copines, their carboxyl terminus shows homology to the A domain found in integrins that allows binding of magnesium ions. The secondary structure of A domains resembles a Rossmann fold, which can bind dinucleotides and is present in a number of intracellular enzymes. Due to a crossreacting activity of Mik b 1, an antibody to the IL-2R b chain, we were able to serendipitously clone human copine III (CIII). CIII is 65% identical to copine I (CI) and the 5 kb CIII transcript is expressed ubiquitously as determined by a multitissue Northern blot. A polyclonal antibody generated against the carboxyl terminus of CIII recognized CIII in immunoblots and immunoprecipitations. Phosphorylation of CIII was observed on serine and threonine residues, as determined by phosphoamino acid analysis. ^ Experiments were designed to determine whether or not any enzymatic activity, specifically kinase activity, was intrinsic to or associated with CIII. In vitro and in gel kinase assays were performed using transfected HA-tagged CI and CIII, immunoprecipitated endogenous CIII and purified endogenous CIII. The exogenous substrate MBP was phosphorylated in all in vitro kinase assays containing CIII protein purification and column chromatography expertise with me. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ser/Thr protein kinase C (PKC) isozyme family plays an important role in cell growth and differentiation and also contributes to key events in the development and progression of cancer. PKC isozymes are activated by phospholipid-dependent mechanisms, and they are also subject to oxidative activation and inactivation. Oxidative regulatory mechanisms are important in the governance of PKC isozyme action. While oxidative PKC activation involves phospho-tyrosine (P-Y) stabilization, the molecular mechanism(s) for oxidative PKC inactivation have not been defined. We previously reported that Thr → Cys peptide-substrate analogs inactivate several PKC isozymes including PKC-α via S-thiolation, i.e., by forming disulfides with PKC thiols. This inactivation mechanism is chemically analogous to protein S-glutathiolation, a post-translational modification that has been shown to oxidatively regulate several enzymes. To determine if PKC-α could be inactivated by S-glutathiolation, we employed the thiol-specific oxidant diamide (0.01–10mM) and 100μM glutathione (GSH). Diamide alone (0.1–5.0 mM) weakly inactivated PKC-α (<20%), and GSH alone had no effect on the isozyme activity. Marked potentiation of diamide-induced PKC-α inactivation (>90%) was achieved by 100μM GSH, resulting in full inactivation of the isozyme. Inactivation was reversed by DTT, consistent with a mechanism involving PKC-α S-glutathiolation. S-glutathiolation was demonstrated as DTT-reversible incorporation of [35S] GSH into PKC-α isozyme structure. These results indicate that a mild oxidative stimulus can inactivate purified PKC-α via S-glutathiolation. In addition, diamide treatment of metabolically labeled NIH3T3 cells induced potent PKC-α inactivation via isozyme [35S] S-thiolation. These results indicate that cellular PKC-α can be regulated via S-glutathiolation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many human diseases, including cancers, result from aberrations of signal transduction pathways. The recent understanding of the molecular biochemistry of signal transduction in normal and transformed cells enable us to have a better insight about cancer and design new drugs to target this abnormal signaling in the cancer cells. Tyrosine kinase pathway plays a very important role in normal and cancer cells. Enhanced activity of tyrosine kinases has been associated with many human cancer types. Therefore, identifying the type of tyrosine kinases involved in a particular cancer type and blocking these tyrosine kinase pathways may provide a way to treat cancer. Receptor tyrosine kinase expression, namely epidermal growth factor receptor (EGFR) family, was examined in the oral squamous cell carcinoma patients. The expression levels of different members of the EGFR family were found to be significantly associated with shorter patients' survival. Combining EGFR, HER-2/neu, and HER-3 expression can significantly improve the predicting power. The effect of emodin, a tyrosine kinase inhibitor, on these receptors in head and neck squamous cell carcinoma cell lines was examined. Emodin was found to suppress the tyrosine phosphorylation of HER-2/neu and EGF-induced tyrosine phosphorylation of EGFR. Emodin also induced apoptosis and downregulated the expression of anti-apoptotic protein bcl-2 in oral squamous cell carcinoma cells. It is known that tyrosine kinase pathways are involved in estrogen receptor signaling pathway. Therefore, the effects of inhibiting the tyrosine kinase pathway in estrogen receptor-positive breast cancers was studied. Emodin was found to act similarly to antiestrogens, capable of inhibiting estrogen-stimulated growth and DNA synthesis, and the phosphorylation of Rb protein. Interestingly, emodin, and other tyrosine kinase inhibitors, such as RG 13022 and genistein, depleted cellular levels of estrogen receptor protein. Emodin-induced depletion of estrogen receptor was mediated by the proteasome degradation pathway. In summary, we have demonstrated that tyrosine kinase pathways play an important role in oral squamous cell carcinoma and estrogen receptor-positive breast cancer. Targeting the tyrosine kinases by inhibitors, such as emodin, may provide a potential way to treat the cancer patients. ^