998 resultados para Properties of matter
Resumo:
The main aim of this thesis is to study the effect of pigments on the weathering properties of wood-polypropylene composites (WPC). The studied properties are color change, water absorption, thickness swelling and Charpy impact strength. The impact of weathering and UV exposure on WPCs was studied by using pigments and minerals as protective agents. The study shows that the pigments and/or mineral fillers can be used to improve the weathering properties of WPCs. The effect of pigments was found to vary with the type of pigment and the method of weathering. The black pigment, an inorganic carbon black master-batch, was found to be the most effective one in reduction of the discoloration of WPCs. By preventing discoloration, and further reducing the degradation of the surface of the WPC, the pigments were found to reduce the decrease in the impact strength after weathering. As well as UV protection, the moisture resistance is a significant factor affecting the durability of WPCs. The addition of mineral fillers was found to improve the moisture-related properties, such as water absorption and thickness swelling, of WPC significantly. According to the findings, addition of pigments and mineral fillers to wood-polypropylene composites appears to be beneficial: color stability and moisture resistance can be enhanced especially in outdoor weathering. The combined effect of black pigment (carbon black master-batch) and wollastonite as a mineral filler was found to bring about the most effective properties against weathering.
Resumo:
The psychometric properties of the Portuguese version of the trait form of the State-Trait Anxiety Inventory (STAI-T) and its relation to the Beck Depression Inventory (BDI) were evaluated in a large Brazilian college student sample containing 845 women and 235 men. STAI-T scores tended to be higher for women, singles, those who work, and subjects under 30 years. Factor analysis of the STAI-T for total sample and by gender yielded two factors: the first representing a mood dimension and the second being related to worrying or cognitive aspects of anxiety. In order to study the relation between anxiety and depression measures, factor analysis of the combination of the 21 BDI items and the 20 STAI-T items was also carried out. The analysis resulted in two factors that were analyzed according to the tripartite model of anxiety and depression. Most of the BDI items (measuring positive affectivity and nonspecific symptoms of depression) were loaded on the first factor and four STAI-T items that measure positive affectivity. The remaining STAI-T items, all of them measuring negative affect, remained in the second factor. Thus, factor 1 represents a depression dimension and factor 2 measures a mood-worrying dimension. The findings of this study suggest that, although widely used as an anxiety scale, the STAI-T in fact measures mainly a general negative affect.
Resumo:
There is evidence concerning the participation of reactive oxygen species in the etiology and physiopathology of human diseases, such as neurodegenerative disorders, inflammation, viral infections, autoimmune pathologies, and digestive system disorders such as gastrointestinal inflammation and gastric ulcer. The role of these reactive oxygen species in several diseases and the potential antioxidant protective effect of natural compounds on affected tissues are topics of high current interest. To consider a natural compound or a drug as an antioxidant substance it is necessary to investigate its antioxidant properties in vitro and then to evaluate its antioxidant functions in biological systems. In this review article, we shall consider the role of natural antioxidants derived from popular plants to reduce or prevent the oxidative stress in gastric ulcer induced by ethanol.
Resumo:
Ultrasonic attenuation coefficient, wave propagation speed and integrated backscatter coefficient (IBC) of human coronary arteries were measured in vitro over the -6 dB frequency bandwidth (36 to 67 MHz) of a focused ultrasound transducer (50 MHz, focal distance 5.7 mm, f/number 1.7). Corrections were made for diffraction effects. Normal and diseased coronary artery sub-samples (N = 38) were obtained from 10 individuals at autopsy. The measured mean ± SD of the wave speed (average over the entire vessel wall thickness) was 1581.04 ± 53.88 m/s. At 50 MHz, the average attenuation coefficient was 4.99 ± 1.33 dB/mm with a frequency dependence term of 1.55 ± 0.18 determined over the 36- to 67-MHz frequency range. The IBC values were: 17.42 ± 13.02 (sr.m)-1 for thickened intima, 11.35 ± 6.54 (sr.m)-1 for fibrotic intima, 39.93 ± 50.95 (sr.m)-1 for plaque, 4.26 ± 2.34 (sr.m)-1 for foam cells, 5.12 ± 5.85 (sr.m)-1 for media and 21.26 ± 31.77 (sr.m)-1 for adventitia layers. The IBC results indicate the possibility for ultrasound characterization of human coronary artery wall tissue layer, including the situations of diseased arteries with the presence of thickened intima, fibrotic intima and plaque. The mean IBC normalized with respect to the mean IBC of the media layer seems promising for use as a parameter to differentiate a plaque or a thickened intima from a fibrotic intima.
Resumo:
The main objective of this study was to develop mathematical model capable to describe the effect of ultrastructural features on the longitudinal modulus of elasticity of softwood fiber. Another objective was to identify, based on ultrastructural features, a potential explanatory factor for the mechanical difference between Norway spruce and Scots pine fibers and to demonstrate its influence utilizing developed modelling tools. According to the literature, the main difference between the pine and spruce fibers is the pit structure, which is clearly different in these fibers. The spruce fiber contains a lot of tiny pits, whereas the pits of the pine fiber are larger and the total number of them is smaller. The effect of the pits on the longitudinal modulus of elasticity of fiber is studied with both the analytical and the numerical model. The results show that, although the spruce fiber seems to contain clearly more pits, larger pits appearing in the pine fiber turn out to have a stronger influence on the longitudinal modulus of elasticity of the fiber. The effect of local variation of microfibril angle which occurs near the pits seems to be minor. Moreover, the results suggest that spruce fibers may have higher ultimate strength due to the more uniform straining behavior.
Resumo:
We have investigated the antinociceptive effects of the essential oil of Ocimum gratissimum L. (Labiatae) (EOOG) in two classical models of pain in male Swiss mice (25-35 g), the writhing test and the formalin test. At doses of 30, 100 and 300 mg/kg (po), EOOG produced a dose-dependent inhibition (from 58.3 ± 4.4 to 40.7 ± 6.3, 36.4 ± 3.6 and 24.6 ± 3.6, respectively; N = 8-10, P<0.05) of acetic acid-induced writhing, causing up to a ~60% inhibition at the highest dose used, comparable to that obtained with indomethacin (10 mg/kg, po). At the same doses, EOOG predominantly inhibited the late (inflammatory) phase of the formalin-induced pain response (from 59.3 ± 8.3 to 40.4 ± 4.8, 23.2 ± 2.8 and 25.3 ± 5.5, respectively; N = 6, P<0.05), with a maximal reduction of ~60% of the control, although a significant reduction of the initial (neurogenic) phase was also observed at 300 mg/kg (from 62.5 ± 6.07 to 37 ± 5.9; P<0.05). On the basis of these data, we conclude that EOOG possesses interesting antinociceptive properties in the writhing and formalin tests. Due to the relatively low toxicity of EOOG, further detailed examination is strongly indicated for a better characterization of its pharmacological properties and its potential therapeutic value.
Resumo:
Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late complications in diabetes. The present study was undertaken to investigate the influence of oral administration of aqueous pod extract (200 mg/kg body weight) of Phaseolus vulgaris, an indigenous plant used in Ayurvedic Medicine in India, on collagen content and characteristics in the tail tendon of streptozotocin-diabetic rats. In diabetic rats, collagen content (117.01 ± 6.84 mg/100 mg tissue) as well as its degree of cross-linking was increased, as shown by increased extent of glycation (21.70 ± 0.90 µg glucose/mg collagen), collagen-linked fluorescence (52.8 ± 3.0 AU/µmol hydroxyproline), shrinkage temperature (71.50 ± 2.50ºC) and decreased acid (1.878 ± 0.062 mg hydroxyproline/100 mg tissue) and pepsin solubility (1.77 ± 0.080 mg hydroxyproline/100 mg tissue). The alpha/ß ratio of acid- (1.69) and pepsin-soluble (2.00) collagen was significantly decreased in streptozotocin-diabetic rats. Administration of P. vulgaris for 45 days to streptozotocin-diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effect of P. vulgaris was compared with that of glibenclamide, a reference drug administered to streptozotocin-diabetic rats at the dose of 600 µg/kg body weight for 45 days by gavage. The effects of P. vulgaris (collagen content, 64.18 ± 1.97; extent of glycation, 12.00 ± 0.53; collagen-linked fluorescence, 33.6 ± 1.9; shrinkage temperature, 57.0 ± 1.0; extent of cross-linking - acid-soluble collagen, 2.572 ± 0.080, and pepsin-soluble collagen, 2.28 ± 0.112) were comparable with those of glibenclamide (collagen content, 71.5 ± 2.04; extent of glycation, 13.00 ± 0.60; collagen-linked fluorescence, 38.9 ± 2.0; shrinkage temperature, 59.0 ± 1.5; extent of cross-linking - acid-soluble collagen, 2.463 ± 0.078, and pepsin-soluble collagen, 2.17 ± 0.104). In conclusion, administration of P. vulgaris pods had a positive influence on the content of collagen and its properties in streptozotocin-diabetic rats.
Resumo:
Plants from the genus Alternanthera are thought to possess antimicrobial and antiviral properties. In Brazilian folk medicine, the aqueous extract of A. tenella Colla is used for its anti-inflammatory activity. The present study investigated the immunomodulatory property of A. tenella extract by evaluating the antibody production in male albino Swiss mice weighing 20-25 g (10 per group). The animals received standard laboratory diet and water ad libitum. The effect of A. tenella extract (5 and 50 mg/kg, ip) was evaluated in mice immunized with sheep red blood cells (SRBC 10%, ip) as T-dependent antigen, or in mice stimulated with mitogens (10 µg, Escherichia coli lipopolysaccharide, LPS, ip). The same doses (5 and 50 mg/kg, ip) of A. tenella extract were also tested for antitumor activity, using the Ehrlich ascites carcinoma as model. The results showed that 50 mg/kg A. tenella extract ip significantly enhanced IgM (64%) and IgG2a (50%) antibody production in mice treated with LPS mitogen. The same dose had no effect on IgM-specific response, whereas the 5 mg/kg treatment caused a statiscally significant reduction of anti-SRBC IgM-specific antibodies (82%). The aqueous extract of A. tenella (50 mg/kg) increased the life span (from 16 ± 1 to 25 ± 1 days) and decreased the number of viable tumor cells (59%) in mice with Ehrlich ascites carcinoma. The present findings are significant for the development of alternative, inexpensive and perhaps even safer strategies for cancer treatment.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water) through polyamide-6 films at temperatures between 20 and 60ºC. Permeation was lowered by increasing pressure at all temperatures. At 23°C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9) cm² s-1) of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20ºC. After release of pressure, the former permeation coefficients were recovered, which suggests that this `pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.
Resumo:
Nasopharyngeal carcinoma (NPC) is notorious for the metastases, which are in close association with Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Arsenic trioxide (As2O3) has been shown to induce apoptosis and differentiation in NPC xenografts. Then, can it repress the cancer cells' metastasis potential? To elucidate this issue, the present study was performed. LMP1-negative cell line HNE1 and LMP1-positive cell line HNE1-LMP1 were used as in vitro model. Cells (1 x 10(5)/mL) were cultured with or without 3 µM As2O3 for 48 h. Then the survival cells were collected to investigate their potential of colony formation, attachment, invasion, and migration. Both confocal immunofluorescence staining and Western blot were used to detect the changes of LMP1 expression. The changes of MMP-9 were examined by RT-PCR assay and Western blot. The results were as follow: i) the colony formation inhibition rate (75.41 ± 3.9% in HNE1-LMP1 cells vs 37.89 ± 4.9% in HNE1 cells), the rate of attachment (HNE1-LMP1 vs HNE1: 56.40 ± 3.5 vs 65.87 ± 5.9%), the invasion inhibitory rate (HNE1-LMP1 vs HNE1: 56.50 ± 3.7 and 27.91 ± 2.1%), and the migration inhibitory rate (HNE1-LMP1 vs HNE1: 48.70 ± 3.9 vs 29.19 ± 6.27%) were all significantly different between the two cell lines (P < 0.01). ii) LMP1 was down-regulated in As2O3-treated HNE1-LMP1 cells. iii) The reduction of MMP-9 was found in As2O3-treated groups, more evident in HNE1-LMP1 cells. Thus, we conclude that As2O3 can reduce metastasis potential of NPC cells, involving inhibition of MMP-9 expression. LMP1 were also reduced in this process and seemed to enhance anti-metastasis activity of As2O3.
Resumo:
In the ascidian Styela plicata, the oocytes are surrounded by two types of accessory cells named follicle cells and test cells. A heparin-like substance with an anticoagulant activity equivalent to 10% of mammalian heparin and about 5% as potent as the mammalian counterpart for the inhibition of thrombin by antithrombin was isolated from the oocyte test cells. In the present study, we compared the antithrombotic and hemorrhagic effects of sea squirt oocyte test cell heparin with those of porcine heparin in rat models of venous thrombosis and blood loss. Intravenous administration of the oocyte test cell heparin to Wistar rats (both sexes, weighing ~300 g, N = 4 in each group) at a dose of 5.0 mg/kg body weight, which produced a 1.8-fold increase in plasma activated partial thromboplastin time, inhibited thrombosis by 45 ± 13.5% (mean ± SD) without any bleeding effect. The same dose of porcine heparin inhibited thrombosis by 100 ± 1.4%, but produced a blood loss three times greater than that of the saline-treated control. However, 10-fold reduction of the dose of porcine heparin to 0.5 mg/kg body weight, which produced a 5-fold increase in plasma-activated partial thromboplastin time, inhibited thrombosis by 70 ± 13% without any bleeding effect. The antithrombotic properties of a new heparin isolated from test cells of the sea squirt S. plicata, reported here for the first time, indicate that, although sea squirt oocyte test cell heparin was a poor anticoagulant compared to porcine heparin, it had a significant antithrombotic effect without causing bleeding.
Resumo:
The objective of the present study was to evaluate the in vitro and in vivo anti-cancer effect of Nigella sativa L. seed extracts. The essential oil (IC50 = 0.6%, v/v) and ethyl acetate (IC50 = 0.75%) extracts were more cytotoxic against the P815 cell line than the butanol extract (IC50 = 2%). Similar results were obtained with the Vero cell line. Although all extracts had a comparable cytotoxic effect against the ICO1 cell line, with IC50 values ranging from 0.2 to 0.26% (v/v), tests on the BSR cell line revealed a high cytotoxic effect of the ethyl acetate extract (IC50 = 0.2%) compared to the essential oil (IC50 = 1.2%). These data show that the cytotoxicity of each extract depends on the tumor cell type. In vivo, using the DBA2/P815 (H2d) mouse model, our results clearly showed that the injection of the essential oil into the tumor site significantly inhibited solid tumor development. Indeed, on the 30th day of treatment, the tumor volume of the control animals was 2.5 ± 0.6 cm³, whereas the tumor volumes of the essential oil-treated animals were 0.22 ± 0.1 and 0.16 ± 0.1 cm³ when the animals were injected with 30 µL (28.5 mg)/mouse and 50 µL (47.5 mg)/mouse per 48 h (six times), respectively. Interestingly, the administration of the essential oil into the tumor site inhibited the incidence of liver metastasis development and improved mouse survival.
Resumo:
In this thesis, the influence of the functionalization of graphene and graphite on their magnetic properties was investigated. The functionalization was performed by covalent attaching of a phenyl groups with three different radicals (4-bromoaniline, 4-chloroaniline and 4-nitroaniline). Magnetic properties were measured by SQUID magnetometer. Both pristine graphite and graphene showed strong diamagnetic behavior. For good quality graphite, diamagnetism was found to be temperature-dependent. All samples demonstrated noticeable paramagnetic contribution below 50 K. According to fitting experimental results with Brillouin function and Curie law, it was shown that paramagnetism is provided by small clusters of spins (superparamagnetic behavior). Moreover, the clusters size and spin concentrations were calculated. For the samples functionalized with nitroaniline the antiferromagnetic transition around 120 K was observed. To explain this behavior, a simple model was proposed. Additional analysis of the graphene quality, structure and composition of the samples was carried out by HRTEM, EDS mapping, Raman spectroscopy and X-ray diffraction techniques.
First-principles study on electronic and structural properties of Cu(In/Ga)Se alloys for solar cells
Resumo:
Thin-film photovoltaic solar cells based on the Cu(In1−xGax)Se2 (CIGS) alloys have attracted more and more attention due to their large optical absorption coefficient, long term stability, low cost, and high efficiency. Modern theoretical studies of this material with first-principles calculations can provide accurate description of the electronic structure and yield results in close agreement with experimental values, but takes a large amount of calculation time. In this work, we use first-principles calculations based on the computationally affordable meta- generalized gradient approximation of the density-functional theory to investigate electronic and structural properties of the CIGS alloys. We report on the simulation of the lattice parameters and band gaps, as a function of chemical composition. The obtained results were found to be in a good agreement with the available experimental data.