904 resultados para Project 2001-012-A : Innovation Potential, Directions and Implementation in the Building andConstruction Product System BRITE
Resumo:
The tie-lines delineating equilibria between CoF2-NiF2 and Co-Ni solid solutions in the ternary Co-Ni-F system at 1373 K have been determined by electron microprobe and EDAX point count analysis of the equilibrated phases. Activities in the fluoride solid solution have been derived from the knowledge of activitycomposition relation in the metallic solid solution and tie-line data,using a modified form of the Gibbs-Duhem integration. The fluorine potentials corresponding to the tie-line compositions have been calculated.The excess Gibbs' energy of mixing for the fluoride solid solution derived from the present data can be represented by the expression
Resumo:
The tie lines between (CoXMg1−X)O solid solution with rock salt structure and orthosilicate solid solution (CoYMg1−Y)-Si0.5O2, and between orthosilicate and metasilicate (CoZMg1-Z)SiO3 crystalline solutions, have been determined experimentally at 1373 K. The compositions of coexisting phases have been determined by electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples. The metasilicate solid solution exists only for 0 > Z > 0.213. The activity of CoO in the rock salt solid solution was determined as a function of composition and temperature in the range of 1023 to 1373 K using a solid-state galvanic cell: Pt, (CoXMg1−X)O+Co|(Y2O3)ZrO2|Co+CoO, Pt The free energy of mixing of (CoXMg1−X)O crystalline solution can be expressed by the equation ΔGE=X(1 −X)[(6048 − 2.146T)X+ (8745 − 3.09T)(1 −X)] J·mol−1 The thermodynamic data for the rock salt phase is combined with information on interphase partitioning of Co and Mg to generate the mixing properties for the ortho- and metasilicate solid solutions. For the orthosilicate solution (CoYMg1 −Y)Si0.5O2 at 1373 K, the excess Gibbs free energy of mixing is given by the relation ΔGE=Y(1 −Y)[2805Y+ 3261(1 −Y)] J·mol−1 For the metasilicate solution (CoZMg1 −Z)SiO3 at the same temperature, the excess free energy can be expressed by the relation ΔGE=Z(1 −Z)[2570Z+ 3627(1 −Z)] J·mol−1
Resumo:
The multiphase flow of fluids in the unsaturated porous medium is considered as a three phase flow of water, NAPL, and air simultaneously in the porous medium. The adaptive solution fully implicit modified sequential method is used for the numerical modelling. The effect of capillarity and heterogeneity effect at the interface between the media is studied and it is observed that the interface criteria has to be taken into account for the correct prediction of NAPL migration especially in heterogeneous media. The modified Newton Raphson method is used for the linearization and Hestines and Steifel Conjugate Gradient method is used as the solver.
Resumo:
Water brings its remarkable thermodynamic and dynamic anomalies in the pure liquid state to biological world where water molecules face a multitude of additional interactions that frustrate its hydrogen bond network. Yet the water molecules participate and control enormous number of biological processes in manners which are yet to be understood at a molecular level. We discuss thermodynamics, structure, dynamics and properties of water around proteins and DNA, along with those in reverse micelles. We discuss the roles of water in enzyme kinetics, in drug-DNA intercalation and in kinetic-proof reading ( the theory of lack of errors in biosynthesis). We also discuss how water may play an important role in the natural selection of biomolecules. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The present paper considers the formation of crystalline phases during solidification and crystallisation of the Zr53Cu21Al10Ni8Ti8 alloy. Solidification was carried out by a copper mould casting technique, which yielded a partially crystalline microstructure comprising a `big cube phase' in a dendritic morphology and a bct Zr2Ni phase. Detailed high-resolution microscopy was carried out to determine possible mechanisms for the formation of the crystalline phases. Based on microstructural examinations, it was established that the dendrites grew by the attachment of atomistic ledges. The bct Zr2Ni phase, formed during solidification and crystallisation, showed various types of faults depending on the crystallite size, and its crystallography was examined in detail. It has been shown that the presence of these faults could be explained by anti-site occupancy in the bct lattice of the Zr2Ni phase.
Resumo:
The effect of Pt on the growth kinetics of the gamma'-Ni(Pt)](3)Al ordered intermetallic phase and the gamma- Ni(Pt, Al) solid solution diffusion rates of the species, hardness and elastic modulus was examined by employing the diffusion couple experimental technique. Experiments were conducted by using the beta-Ni(Pt)Al phase and Ni(Pt) alloy couples, each of which had a fixed amount of Pt (5, 10 and 15 at. %) in both the end members so that the Pt content is more or less constant throughout the interdiffusion zone. The results suggest that the growth kinetics of both phases and the average effective interdiffusion coefficients of Ni and Al increase with the increase in Pt content. Nanoindentation studies across the compositional gradients show that the mechanical properties of the intermetallic phase in the superalloy are relatively insensitive to the presence of Pt but are more sensitive to the Ni/Al ratio. In contrast, the marked variation in the hardness of the gamma phase were noted, increasing markedly with Al concentration in a given couple and also increasing with increasing Pt content. Possible causes for the observed variations are discussed.
Resumo:
We show that it is possible to change from a subnatural electromagnetically induced transparency (EIT) feature to a subnatural electromagnetically induced absorption (EIA) feature in a (degenerate) three-level. system. The change is effected by turning on a second control beam counter-propagating with respect to the first beam. We observe this change in the D-2 line of Rb in a room temperature vapor cell. The observations are supported by density-matrix analysis of the complete sublevel structure including the effect of Doppler averaging, but can be understood qualitatively as arising due to the formation of N-type systems with the two control beams. Since many of the applications of EIT and EIA rely on the anomalous dispersion near the resonances, this introduces a new ability to control the sign of the dispersion. Copyright (C) EPLA, 2012
Resumo:
The rapid recent increase in microarray-based gene expression studies in the corpus luteum (CL) utilizing macaque models gathered increasing volume of data in publically accessible microarray expression databases. Examining gene pathways in different functional states of CL may help to understand the factors that control luteal function and hence human fertility. Co-regulation of genes in microarray experiments may imply common transcriptional regulation by sequence-specific DNA-binding transcriptional factors. We have computationally analyzed the transcription factor binding sites (TFBS) in a previously reported macaque luteal microarray gene set (n = 15) that are common targets of luteotropin (luteinizing hormone (LH) and human chorionic gonadotropin (hCG)) and luteolysin (prostaglandin (PG) F-2 alpha). This in silico approach can reveal transcriptional networks that control these important genes which are representative of the interplay between luteotropic and luteolytic factors in the control of luteal function. Our computational analyses revealed 6 matrix families whose binding sites are significantly over-represented in promoters of these genes. The roles of these factors are discussed, which might help to understand the transcriptional regulatory network in the control of luteal function. These factors might be promising experimental targets for investigation of human luteal insufficiency. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Resonance Raman spectroscopy is a powerful analytical tool for detecting and identifying analytes, but the associated strong fluorescence background severely limits the use of the technique. Here, we show that by attaching beta-cyclodextrin (beta-CD) cavities to reduced graphene-oxide (rGO) sheets we obtain a water dispersible material (beta-CD: rGO) that combines the hydrophobicity associated with rGO with that of the cyclodextrin cavities and provides a versatile platform for resonance Raman detection. Planar aromatic and dye molecules that adsorb on the rGO domains and nonplanar molecules included within the tethered beta-CD cavities have their fluorescence effectively quenched. We show that it is possible using the water dispersible beta-CD: rGO sheets to record the resonance Raman spectra of adsorbed and included organic chromophores directly in aqueous media without having to extract or deposit on a substrate. This is significant, as it allows us to identify and estimate organic analytes present in water by resonance Raman spectroscopy.
Resumo:
In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components-like genetic circuits, biochemical cascades, and ion channels, among others-enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode-with almost 20-60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma.
Resumo:
The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatiotemporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of similar to 1200 km(3) is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and floodplains of the Amazon basin was, respectively, similar to 230 (similar to 40%) and 210 (similar to 50%) km(3) below the 1993-2007 average. This new 15 year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.
Resumo:
Despite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called ``cap domains'' are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro. We show here that this C-terminal extension (CTE) mediates in vivo localization of the protein to the cell membrane and cell wall as well as modulates expression levels of Rv0805 in mycobacteria. We also demonstrate that Rv0805 interacts with the cell wall of mycobacteria, possibly with the mycolyl-arabinogalactan-peptidoglycan complex, by virtue of its C terminus, a hitherto unknown property of this MPE. Using a panel of mutant proteins, we identify interactions between active site residues of Rv0805 and the CTE that determine its association with the cell wall. Finally, we show that Rv0805 and a truncated mutant devoid of the CTE produce different phenotypic effects when expressed in mycobacteria. Our study thus provides a detailed dissection of the functions of the cap domain of an MPE and suggests that the repertoire of cellular functions of MPEs cannot be understood without exploring the modulatory effects of these subdomains.