946 resultados para Probe for chromosome translocation
Resumo:
The translocation of C and N in a maize-Striga hermonthica association was investigated at three rates of nitrogen application in a glasshouse experiment. The objectives were to measure the transfer of C and N from maize to S. hermonthica and to determine whether the amount of N in the growing medium affected the proportions of C and N transferred. Young plants of maize were labelled in a (CO2)-C-13 atmosphere and leaf tips were immersed in ((NH4)-N-15)(2)SO4 Solution. The Striga x N interaction was not significant for any of the responses measured. Total dry matter for infected maize was significantly smaller than for uninfected maize from 43 to 99 days after planting, but N application increased total dry matter at all sampling times. Infected maize plants partitioned 39-45 % of their total dry matter to the roots compared with 28-31 % for Uninfected maize. Dry matter of S. hermonthica was not affected by the rate of N applied. S. hermonthica derived 100 % of its carbon from maize before emergence, decreasing to 22-59 % thereafter; the corresponding values for nitrogen were up to 59 % pre-emergence and Lip to 100 % after emergence. The relative proportions of nitrogen depleted from the host (up to 10 %) were greater than those of carbon (maximum 1.2 %) at all times of sampling after emergence of the parasite. The results show that the parasite was more dependent on the host for nitrogen than for carbon.
Resumo:
A series of promoter probe vectors for use in Gram-negative bacteria has been made in two broad-host-range vectors, pOT (pBBR replicon) and pJP2 (incP replicon). Reporter fusions can be made to gfpUV, gfprnut3.1, unstable gfpmut3.1 variants (LAA, LVA, AAV and ASV), gfp+, dsRed2, dsRedT3, dsRedT4, mRFP1, gusA or lacZ. The two vector families, pOT and pJP2, are compatible with one another and share the same polylinker for facile interchange of promoter regions. Vectors based on pJP2 have the advantage of being ultra-stable in the environment due to the presence of the parABCDE genes. As a confirmation of their usefulness, the dicarboxylic acid transport system promoter (dctA(p)) was cloned into a pOT (pRU1097)- and a pJP2 (pRU1156)-based vector and shown to be expressed by Rhizobium leguminosarum in infection threads of vetch. This indicates the presence of dicarboxylates at the earliest stages of nodule formation.
Resumo:
Recent rapid developments in biological analysis, medical diagnosis, pharmaceutical industry, and environmental control fuel the urgent need for recognition of particular DNA sequences from samples. Currently, DNA detection techniques use radiochemical, enzymatic, fluorescent, or electrochemiluminescent methods; however, these techniques require costly labeled DNA and highly skilled and cumbersome procedure, which prohibit any in-situ monitoring. Here, we report that hybridization of surface-immobilized single-stranded oligonucleotide on praseodymium oxide (evaluated as a biosensor surface for the first time) with complimentary strands in solution provokes a significant shift of electrical impedance curve. This shift is attributed to a change in electrical characteristics through modification of surface charge of the underlying modified praseodymium oxide upon hybridization with the complementary oligonucelotide strand. On the other hand, using a noncomplementary single strand in solution does not create an equivalent change in the impedance value. This result clearly suggests that a new and simple electrochemical technique based on the change in electrical properties of the modified praseodymium oxide semiconductor surface upon recognition and transduction of a biological event without using labeled species is revealed.
Resumo:
Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.
Resumo:
High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.
Resumo:
Current force feedback, haptic interface devices are generally limited to the display of low frequency, high amplitude spatial data. A typical device consists of a low impedance framework of one or more degrees-of-freedom (dof), allowing a user to explore a pre-defined workspace via an end effector such as a handle, thimble, probe or stylus. The movement of the device is then constrained using high gain positional feedback, thus reducing the apparent dof of the device and conveying the illusion of hard contact to the user. Such devices are, however, limited to a narrow bandwidth of frequencies, typically below 30Hz, and are not well suited to the display of surface properties, such as object texture. This paper details a device to augment an existing force feedback haptic display with a vibrotactile display, thus providing a means of conveying low amplitude, high frequency spatial information of object surface properties. 1. Haptics and Haptic Interfaces Haptics is the study of human touch and interaction with the external environment via touch. Information from the human sense of touch can be classified in to two categories, cutaneous and kinesthetic. Cutaneous information is provided via the mechanoreceptive nerve endings in the glabrous skin of the human hand. It is primarily a means of relaying information regarding small-scale details in the form of skin stretch, compression and vibration.
Resumo:
We explicitly tested for the first time the ‘environmental specificity’ of traditional 16S rRNAtargeted fluorescence in situ hybridization (FISH) through comparison of the bacterial diversity actually targeted in the environment with the diversity that should be exactly targeted (i.e. without mismatches) according to in silico analysis. To do this, we exploited advances in modern Flow Cytometry that enabled improved detection and therefore sorting of sub-micron-sized particles and used probe PSE1284 (designed to target Pseudomonads) applied to Lolium perenne rhizosphere soil as our test system. The 6-carboxyfluorescein (6-FAM)-PSE1284-hybridised population, defined as displaying enhanced green fluorescence in Flow Cytometry, represented 3.51±1.28% of the total detected population when corrected using a nonsense (NON-EUB338) probe control. Analysis of 16S rRNA gene libraries constructed from Fluorescence Activated Cell Sorted (FACS) -recovered fluorescent populations (n=3), revealed that 98.5% (Pseudomonas spp. comprised 68.7% and Burkholderia spp. 29.8%) of the total sorted population was specifically targeted as evidenced by the homology of the 16S rRNA sequences to the probe sequence. In silico evaluation of probe PSE1284 with the use of RDP-10 probeMatch justified the existence of Burkholderia spp. among the sorted cells. The lack of novelty in Pseudomonas spp. sequences uncovered was notable, probably reflecting the well-studied nature of this functionally important genus. To judge the diversity recorded within the FACS-sorted population, rarefaction and DGGE analysis were used to evaluate, respectively, the proportion of Pseudomonas diversity uncovered by the sequencing effort and the representativeness of the Nycodenz® method for the extraction of bacterial cells from soil.
Resumo:
The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K) – Akt signalling pathways retains FoxO3a in the cytoplasm thereby inhibiting the transcriptional activation of death promoting genes. We hypothesised that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K-Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localisation of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and upregulated Fas ligand expression. In contrast the phenolic antioxidant tBHQ caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a prevented NMDA-induced upregulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration.
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
We present a new iterative approach called Line Adaptation for the Singular Sources Objective (LASSO) to object or shape reconstruction based on the singular sources method (or probe method) for the reconstruction of scatterers from the far-field pattern of scattered acoustic or electromagnetic waves. The scheme is based on the construction of an indicator function given by the scattered field for incident point sources in its source point from the given far-field patterns for plane waves. The indicator function is then used to drive the contraction of a surface which surrounds the unknown scatterers. A stopping criterion for those parts of the surfaces that touch the unknown scatterers is formulated. A splitting approach for the contracting surfaces is formulated, such that scatterers consisting of several separate components can be reconstructed. Convergence of the scheme is shown, and its feasibility is demonstrated using a numerical study with several examples.
Resumo:
The galE gene of Streptomyces lividans was used to probe a cosmid library harbouring Brucella melitensis 16M DNA and the nucleotide sequence of a 2.5 kb ClaI fragment which hybridised was determined. An open reading frame encoding a predicted polypeptide with significant homology to UDP-galactose-4-epimerases of Brucella arbortus strain 2308 and other bacterial species was identified. DNA sequences flanking the B. melitensis galE gene shared no identity with other gal genes and, as for B. abortus, were located adjacent to a mazG homologue. A plasmid which encoded the B. melitensis galE open reading frame complemented a galE mutation in Salmonella typhimurium LB5010, as shown by the restoration of smooth lipopolysaccharide (LPS) biosynthesis, sensitivity to phage P22 infection and restoration of UDP-galactose-4-epimerase activity. The galE gene on the B. melitensis 16M chromosome was disrupted by insertional inactivation and these mutants lacked UDP-galactose-4-epimerase activity but no discernible differences in LPS structure between parent and the mutants were observed. One B. melitensis 16M galE mutant, Bm92, was assessed for virulence in CD-1 and BALB/c mice and displayed similar kinetics of invasion and persistence in tissues compared with the parent bacterial strain. CD-1 mice immunised with B. melitensis 16M galE were protected against B. melitensis 16M challenge. Crown Copyright (C) 1999 Published by Elsevier Science B.V.
Resumo:
We report here the construction and characterisation of a BAC library from the maize flint inbred line F2, widely used in European maize breeding programs. The library contains 86,858 clones with an average insert size of approximately 90 kb, giving approximately 3.2-times genome coverage. High-efficiency BAC cloning was achieved through the use of a single size selection for the high-molecular-weight genomic DNA, and co-transformation of the ligation with yeast tRNA to optimise transformation efficiency. Characterisation of the library showed that less than 0.5% of the clones contained no inserts, while 5.52% of clones consisted of chloroplast DNA. The library was gridded onto 29 nylon filters in a double-spotted 8 × 8 array, and screened by hybridisation with a number of single-copy and gene-family probes. A 3-dimensional DNA pooling scheme was used to allow rapid PCR screening of the library based on primer pairs from simple sequence repeat (SSR) and expressed sequence tag (EST) markers. Positive clones were obtained in all hybridisation and PCR screens carried out so far. Six BAC clones, which hybridised to a portion of the cloned Rp1-D rust resistance gene, were further characterised and found to form contigs covering most of this complex resistance locus.
Resumo:
Background: Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe- set, consisting of up to 16 probe-pairs. Signal intensities across probe- pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We have previously developed a technique to study the transcriptomes of heterologous species based on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology. Results: Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation intensity increased the number of genes identified as significantly differentially expressed in two published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice. Conclusion: This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays.