914 resultados para Probabilistic logic
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user deñned, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples and report on an implementation of our ideas.
Resumo:
We study the múltiple specialization of logic programs based on abstract interpretation. This involves in general generating several versions of a program predícate for different uses of such predícate, making use of information obtained from global analysis performed by an abstract interpreter, and finally producing a new, "multiply specialized" program. While the topic of múltiple specialization of logic programs has received considerable theoretical attention, it has never been actually incorporated in a compiler and its effects quantified. We perform such a study in the context of a parallelizing compiler and show that it is indeed a relevant technique in practice. Also, we propose an implementation technique which has the same power as the strongest of the previously proposed techniques but requires little or no modification of an existing abstract interpreter.
Resumo:
This paper presents a study of the effectiveness of three different algorithms for the parallelization of logic programs based on compile-time detection of independence among goals. The algorithms are embedded in a complete parallelizing compiler, which incorporates different abstract interpretation-based program analyses. The complete system shows the task of automatic program parallelization to be practical. The trade-offs involved in using each of the algorithms in this task are studied experimentally, weaknesses of these identified, and possible improvements discussed.
Resumo:
Several types of parallelism can be exploited in logic programs while preserving correctness and efficiency, i.e. ensuring that the parallel execution obtains the same results as the sequential one and the amount of work performed is not greater. However, such results do not take into account a number of overheads which appear in practice, such as process creation and scheduling, which can induce a slow-down, or, at least, limit speedup, if they are not controlled in some way. This paper describes a methodology whereby the granularity of parallel tasks, i.e. the work available under them, is efficiently estimated and used to limit parallelism so that the effect of such overheads is controlled. The run-time overhead associated with the approach is usually quite small, since as much work is done at compile time as possible. Also, a number of run-time optimizations are proposed. Moreover, a static analysis of the overhead associated with the granularity control process is performed in order to decide its convenience. The performance improvements resulting from the incorporation of grain size control are shown to be quite good, specially for systems with médium to large parallel execution overheads.
Resumo:
Goal independent analysis of logic programs is commonly discussed in the context of the bottom-up approach. However, while the literature is rich in descriptions of top-down analysers and their application, practical experience with bottom-up analysis is still in a preliminary stage. Moreover, the practical use of existing top-down frameworks for goal independent analysis has not been addressed in a practical system. We illustrate the efficient use of existing goal dependent, top-down frameworks for abstract interpretation in performing goal independent analyses of logic programs much the same as those usually derived from bottom-up frameworks. We present several optimizations for this flavour of top-down analysis. The approach is fully implemented within an existing top-down framework. Several implementation tradeoffs are discussed as well as the influence of domain characteristics. An experimental evaluation including a comparison with a bottom-up analysis for the domain Prop is presented. We conclude that the technique can offer advantages with respect to standard goal dependent analyses.
Resumo:
In this paper we present a novel execution model for parallel implementation of logic programs which is capable of exploiting both independent and-parallelism and or-parallelism in an efficient way. This model extends the stack copying approach, which has been successfully applied in the Muse system to implement or-parallelism, by integrating it with proven techniques used to support independent and-parallelism. We show how all solutions to non-deterministic andparallel goals are found without repetitions. This is done through recomputation as in Prolog (and in various and-parallel systems, like &-Prolog and DDAS), i.e., solutions of and-parallel goals are not shared. We propose a scheme for the efficient management of the address space in a way that is compatible with the apparently incompatible requirements of both and- and or-parallelism. We also show how the full Prolog language, with all its extra-logical features, can be supported in our and-or parallel system so that its sequential semantics is preserved. The resulting system retains the advantages of both purely or-parallel systems as well as purely and-parallel systems. The stack copying scheme together with our proposed memory management scheme can also be used to implement models that combine dependent and-parallelism and or-parallelism, such as Andorra and Prometheus.
Resumo:
Traditional logic programming languages, such as Prolog, use a fixed left-to-right atom scheduling rule. Recent logic programming languages, however, usually provide more flexible scheduling in which computation generally proceeds leftto- right but in which some calis are dynamically "delayed" until their arguments are sufRciently instantiated to allow the cali to run efficiently. Such dynamic scheduling has a significant cost. We give a framework for the global analysis of logic programming languages with dynamic scheduling and show that program analysis based on this framework supports optimizations which remove much of the overhead of dynamic scheduling.
Resumo:
Studying independence of literals, variables, and substitutions has proven very useful in the context of logic programming (LP). Here we study independence in the broader context of constraint logic programming (CLP). We show that a naive extrapolation of the LP definitions of independence to CLP is unsatisfactory (in fact, wrong) for two reasons. First, because interaction between variables through constraints is more complex than in the case of logic programming. Second, in order to ensure the efUciency of several optimizations not only must independence of the search space be considered, but also an orthogonal issue - "independence of constraint solving." We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow different independence-related optimizations, from parallelism to intelligent backtracking. Sufficient conditions for independence which can be evaluated "a-priori" at run-time are also proposed. Our results suggest that independence, provided a suitable definition is chosen, is even more useful in CLP than in LP.
Resumo:
This paper addresses the design of visual paradigms for observing the parallel execution of logic programs. First, an intuitive method is proposed for arriving at the design of a paradigm and its implementation as a tool for a given model of parallelism. This method is based on stepwise reñnement starting from the deñnition of basic notions such as events and observables and some precedence relationships among events which hold for the given model of parallelism. The method is then applied to several types of parallel execution models for logic programs (Orparallelism, Determinate Dependent And parallelism, Restricted and-parallelism) for which visualization paradigms are designed. Finally, VisAndOr, a tool which implements all of these paradigms is presented, together with a discussion of its usefulness through examples.
Resumo:
While logic programming languages offer a great deal of scope for parallelism, there is usually some overhead associated with the execution of goals in parallel because of the work involved in task creation and scheduling. In practice, therefore, the "granularity" of a goal, i.e. an estimate of the work available under it, should be taken into account when deciding whether or not to execute a goal concurrently as a sepárate task. This paper describes a method for estimating the granularity of a goal at compile time. The runtime overhead associated with our approach is usually quite small, and the performance improvements resulting from the incorporation of grainsize control can be quite good. This is shown by means of experimental results.
Resumo:
There has been significant interest in parallel execution models for logic programs which exploit Independent And-Parallelism (IAP). In these models, it is necessary to determine which goals are independent and therefore eligible for parallel execution and which goals have to wait for which others during execution. Although this can be done at run-time, it can imply a very heavy overhead. In this paper, we present three algorithms for automatic compiletime parallelization of logic programs using IAP. This is done by converting a clause into a graph-based computational form and then transforming this graph into linear expressions based on &-Prolog, a language for IAP. We also present an algorithm which, given a clause, determines if there is any loss of parallelism due to linearization, for the case in which only unconditional parallelism is desired. Finally, the performance of these annotation algorithms is discussed for some benchmark programs.
Resumo:
This paper presents and proves some fundamental results for independent and-parallelism (IAP). First, the paper treats the issues of correctness and efficiency: after defining strict and non-strict goal independence, it is proved that if strictly independent goals are executed in parallel the solutions obtained are the same as those produced by standard sequential execution. It is also shown that, in the absence of failure, the parallel proof procedure doesn't genérate any additional work (with respect to standard SLDresolution) while the actual execution time is reduced. The same results hold even if non-strictly independent goals are executed in parallel, provided a trivial rewriting of such goals is performed. In addition, and most importantly, treats the issue of compile-time generation of IAP by proposing conditions, to be written at compile-time, to efficiently check strict and non-strict goal independence at run-time and proving the sufficiency of such conditions. It is also shown how simpler conditions can be constructed if some information regarding the binding context of the goals to be executed in parallel is available to the compiler trough either local or program-level analysis. These results therefore provide a formal basis for the automatic compile-time generation of IAP. As a corollary of such results, the paper also proves that negative goals are always non-strictly independent, and that goals which share a first occurrence of an existential variable are never independent.
Resumo:
Abstract is not available
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of both speed and precision of analysis. It discusses design and implementation aspects of two practical abstract interpretation-based flow analysis systems: MA3, the MOO Andparallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained from these implementations. Based on these results, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.