970 resultados para Prism Yearbooks
Resumo:
The transition from the late Oligocene warm period into the early Miocene was marked by a series of rapid and brief episodes of cryospheric expansion and global cooling. We analyzed benthic foraminifers from nannofossil oozes recovered at Ocean Drilling Program Site 1218 to construct a stable isotope stratigraphy for the deep Pacific.
Resumo:
Analysis of the palynofacies and miospore thermal alteration indices (TAI) of sediments from ODP Site 808 in the Nankai Trough was undertaken to determine (1) the source, depositional environment, and diagenesis of organic matter in the accreted sediments, and (2) the thermal structure and history of the prism and its relationship to fluid flow. Using the Hartax classification system, two palynofacies were recognized in the sedimentary sequence. Facies 1 occurs within the upper 600 m of trench-wedge turbidites (sedimentation rate > 1 km/m.y.) and contains >50% inertite particles. The rest of the assemblage is dominated by well-preserved phytoclasts and contains small amounts of poorly preserved phytoclasts and well-preserved scleratoclasts. Facies 2 occurs within the Shikoku Basin hemipelagites (600-1300 m below seafloor; sedimentation rate <150 m/m.y.) and contains over two-thirds inertite particles. The rest of the assemblage is dominated by poorly preserved phytoclasts. Miospores and marine phytoplankton compose only a small percentage of both palynofacies. Degraded organic matter is most noticeable in Facies 2, whereas its presence in Facies 1 is overshadowed by the high influx of well-preserved primary organic matter. Most of the degraded organic matter and inertite is interpreted to be reworked. Some of the degraded organic matter may be primary, and may have experienced more biodegradation and thermal alteration in Facies 2 than in Facies 1. TAI values indicate an immature stage of organic maturation (< 2) down to about 900 mbsf. Below this, samples show an increase with depth to a mature stage, reaching peak levels of about 3 just above basement. Samples from within the thrust fault and decollement zones do not show levels of maturity significantly greater than those of surrounding samples, leaving uncertain whether hot fluids have migrated along these fault boundaries in the past.
Resumo:
A detailed d18O and d13C stratigraphy has been generated from analysis of well-preserved Albian - Early Maastrichtian foraminifera from Deep Sea Drilling Project (DSDP) Sites 511 and 327 (Falkland Plateau; ~58°S - 62°S paleolatitude) in the southern South Atlantic, and Cenomanian and Coniacian - Santonian foraminifera from DSDP Site 258 (Naturaliste Plateau; ~58°S paleolatitude) in the southern Indian Ocean. These results, when combined with previously published Maastrichtian stable isotope data from Ocean Drilling Program (ODP) Site 690 (Weddell Sea, ~65°S paleolatitude), provide new insight into the climatic and oceanographic history of the southern high latitudes during Middle-Late Cretaceous time. The planktonic foraminifer d18O curves reveal a gradual warming of surface waters from the Albian through the Cenomanian followed by extremely warm surface waters from the Turonian through the early Campanian. Long-term cooling of surface waters began in the late early Campanian and continued through the end of the Maastrichtian. The benthic foraminifer d18O record generally parallels changes in the oxygen isotopic curves defined by shallow-dwelling planktonic foraminifera. The vertical oxygen and carbon isotopic gradients were relatively low during the Albian - Cenomanian, high from the Turonian - Early Campanian, and then low during the late Campanian and Maastrichtian.
Resumo:
Benthic foraminiferal carbon isotope records from a suite of drill sites in the North Atlantic are used to trace variations in the relative strengths of Lower North Atlantic Deep Water (LNADW), Upper North Atlantic Deep Water (UNADW), and Southern Ocean Water (SOW) over the past 1 Myr. During glacial intervals, significant increases in intermediate-to-deep delta13C gradients (commonly reaching >1.2?) are consistent with changes in deep water circulation and associated chemical stratification. Bathymetric delta13C gradients covary with benthic foraminiferal delta18O and covary inversely with Vostok CO2, in agreement with chemical stratification as a driver of atmospheric CO2 changes. Three deep circulation indices based on delta13C show a phasing similar to North Atlantic sea surface temperatures, consistent with a Northern Hemisphere control of NADW/SOW variations. However, lags in the precession band indicate that factors other than deep water circulation control ice volume variations at least in this band.
Resumo:
Changes in the intermediate water structure of the North Atlantic were reconstructed using benthic foraminiferal delta13C at Ocean Drilling Program (ODP) site 982 for the past 1.0 Myr. During most terminations of the late Pleistocene, melting of icebergs and low-salinity surface waters caused production of Glacial North Atlantic Intermediate Water to cease, resulting in decreased ventilation of the middepth North Atlantic. Poor ventilation of intermediate water masses lasted well into some interglacial stages until upper North Atlantic Deep Water (NADW) production resumed under full interglacial conditions. The magnitude of benthic delta13C minima and ice-rafted debris maxima at terminations at site 982 generally match the degree of glacial suppression of NADW inferred from site 607. These processes may be related and controlled by the spatial and seasonal extent of sea ice cover during glaciations in the Nordic Seas.
Resumo:
This study of the interstitial water concentration-depth distributions of iodide, bromide, boron, d11B, and dissolved organic carbon, as represented by absorbance at 325 nm (yellow substance: YS) and laser-induced fluorescence (LIF), is a follow-up of the extensive shipboard program of interstitial water analysis during ODP Leg 131. Most of the components studied are associated with processes involving the diagenesis of organic matter in these sediments. Three zones of the sediment column are discussed separately because of the different processes involved in causing concentration changes: 1. The upper few hundreds of meters: In this zone, characterized by very high sedimentation rates (>1200 m/m.y.), interstitial waters show very sharp increases in alkalinity, ammonia, iodide, bromide, YS, and LIF, mainly as a result of the diagenesis of organic carbon; 2. Whereas below 200 mbsf concentration gradients all show a decreasing trend, the zone at ~ 365 mbsf is characterized by concentration reversals, mainly due to the recent emplacement of deeper sediments above this depth as a result of thrust-faulting; 3. The décollement zone (945-964 mbsf) is characterized by concentration anomalies in various constituents (bromide, boron, d11B, manganese, LIF). These data are interpreted as resulting from an advective input of fluids along the zone of décollement as recent as ~ 200 ka. Possibly periodic inputs of anomalous fluids still seem to occur along this décollement zone.
Resumo:
Mixed terrigenous-pelagic sediments from the Oligocene-lower Miocene interval of Hole 1139A accumulated on the flank of an eroded alkalic volcano, Skiff Bank. In this study, I explore relationships among sediment fluxes, especially of organic carbon and the clay mineral by-products of silicate weathering, and lithologic, tectonic, climatic, and biologic forcing factors. Benthic foraminifers indicate that Skiff Bank had subsided to lower bathyal depths (1000-2000 m) by the Oligocene. Two prominent maxima in noncarbonate concentration at 28 and 22 Ma correspond to peaks in the terrigenous flux; also, high noncarbonate concentrations are associated with larger grain sizes (silt) and higher opal concentrations. These and higher-frequency variations of noncarbonate concentration were probably controlled by glacioeustatic/climatic changes, with higher noncarbonate concentrations caused by increased erosion during glacial lowstands. Around 27 Ma, benthic foraminiferal d18O values decreased 0.7 per mil as the noncarbonate concentration decreased after the 28-Ma maximum. A paucity of clay-sized sediment and clay minerals suggests that physical erosion, by waves and/or ice, predominated under weathering-limited conditions. Low organic carbon concentrations (~0.13 wt%) also suggest a harsh environment and/or poor preservation in coarse (>2 µm) sediments that were extensively bioturbated below the oxygen minimum zone.
Resumo:
Site 672 is located on the Atlantic abyssal plain to the east of the Lesser Antilles forearc region. It serves as a stratigraphic reference section for sediments entering the Barbados accretionary prism. A relatively complete Pliocene through lower Pleistocene section was recovered from Site 672 that contains a moderately well-preserved population of benthic foraminifers. Q-mode factor analysis of the benthic population data identified three Pliocene-Pleistocene assemblages that inhabited this site. The Factor 1 fauna, characterized by Nuttallides umboniferus, is commonly associated with the presence of Antarctic Bottom Water (AABW). The Factor 2 assemblage is characterized by Globocassidulina subglobosa, Epistominella exigua, and a combined category of unilocular species. The Factor 3 assemblage is characterized by Epistominella exigua, and Planulina wuellerstorfi. The Factor 2 and 3 faunas are associated with bottom water significantly warmer than that preferred by the Factor 1 assemblage. The distribution of these assemblages has been used to distinguish three climatic intervals in the abyssal environment during the Pliocene-Pleistocene. An early Pliocene warm interval occurred from the Ceratolithus rugosus Subzone to the middle of the Discoaster tamalis Subzone. The upper Pliocene is characterized by oscillations between the Factor 1 and Factor 2 assemblages, which suggests climatic deterioration and increased pulses of AABW flow. The persistence of an essentially modern (Factor 1) fauna throughout the early Pleistocene suggests full glacial development at both poles and a substantial volume of AABW production.
Resumo:
During Ocean Drilling Program Leg 134 (Vanuatu), geological high sensitivity magnetic tools (GHMT) developed by CEA-LETI and TOTAL were used at two drill sites. GHMT combine two sensors, a proton magnetometer for total magnetic field measurements with an operational accuracy of 0.1 nanoteslas (nT), and a highly sensitive induction tool to measure the magnetic susceptibility with an operational accuracy of a few 10**-6 SI units. Hole 829A was drilled through an accretionary prism and the downhole measurements of susceptibility correlate well with other well-log physical properties. Sharp susceptibility contrasts between chalk and volcanic silt sediment provide complementary data that help define the lithostratigraphic units. At Hole 831B magnetic susceptibility and total field measurements were performed through a 700-m reef carbonate sequence of a guyot deposited on top of an andesitic volcano. The downhole magnetic susceptibility is very low and the amplitude of peak-to-peak anomalies is less than a few 10**-5 SI units. Based on the repeatability of the measurements, the accuracy of the magnetic logging measurements was demonstrated to be excellent. Total magnetic field data at Hole 831B reveal low magnetic anomalies of 0.5 to 5 nT and the measurement of a complete repeat section indicates an accuracy of 0.1 to 0.2 nT. Due to the inclination of the earth's magnetic field in this area (~-40°) and the very low magnetic susceptibility of the carbonate, the contribution of the induced magnetization to the total field measured in the hole is negligible. Unfortunately, because the core recovery was extremely poor (<5%) no detailed comparison between the core measurements and the downhole magnetic data could be made. Most samples have a diamagnetic susceptibility and very low intensity of remanent magnetization (< 10**-4 A/m), but a few samples have a stable remanent magnetization up to 0.005 A/m. These variations of the intensity of the remanent magnetization suggest a very heterogeneous distribution of the magnetization in the carbonate sequence that could explain the magnetic field anomalies measured in these weakly magnetized rocks.