947 resultados para Predator Escape
Resumo:
Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 μL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.
Resumo:
Panic disorder patients are vulnerable to recurrent panic attacks. Two neurochemical hypotheses have been proposed to explain this susceptibility. The first assumes that panic patients have deficient serotonergic inhibition of neurons localized in the dorsal periaqueductal gray matter of the midbrain that organize defensive reactions to cope with proximal threats and of sympathomotor control areas of the rostral ventrolateral medulla that generate most of the neurovegetative symptoms of the panic attack. The second suggests that endogenous opioids buffer normal subjects from the behavioral and physiological manifestations of the panic attack, and their deficit brings about heightened suffocation sensitivity and separation anxiety in panic patients, making them more vulnerable to panic attacks. Experimental results obtained in rats performing one-way escape in the elevated T-maze, an animal model of panic, indicate that the inhibitory action of serotonin on defense is connected with activation of endogenous opioids in the periaqueductal gray. This allows reconciliation of the serotonergic and opioidergic hypotheses of panic pathophysiology, the periaqueductal gray being the fulcrum of serotonin-opioid interaction.
Resumo:
The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.
Resumo:
The aim of this thesis was to examine how aquatic organisms, such as fish, behave in an altered environmental condition. Many species of fish use vision as their primary tool to gain information about their surrounding environment. The visual conditions of aquatic habitats are often altered as a result of anthropogenic disturbance, such as eutrophication that initiates algal turbidity. In general, turbidity reduces the visibility and can be hypothesized to have an influence on the behaviour of fish. I used the three-spined stickleback (Gasterosteus aculeatus) as a model species and conducted four studies in the laboratory to test how algal turbidity affects its behaviour. In this thesis, two major behavioural aspects are discussed. The first is antipredator behaviour. In study I, the combined effects of turbidity and shoot density on habitat choice (shelter vs open) behaviour was tested on a group of sticklebacks (20 fish) in the presence and absence of piscivorous perch (Perca fluviatilis). In study II, I examined the behavioural responses of feeding sticklebacks when they were exposed to the sudden appearance of an avian predator (the silhouette of a common tern, Sterna hirundo). The study was done in turbid and clear water using three different groups sizes (1, 3 and 6 fish). The second aspect is foraging behaviour. Study III & IV focused on the effects of algal turbidity on the foraging performance of sticklebacks. In study III, I conducted two separate experiments to examine the effects of turbidity on prey consumption and prey choice of sticklebacks. In this experiment turbidity levels and the proportion of large and small prey (Daphnia spp.) were manipulated. In study IV, I studied whether a group of six sticklebacks can distribute themselves according to food input at two feeding stations in a way that provided each fish with the same amount of food in clear and turbid water. I also observed whether the fish can follow changes in resource distribution between the foraging patches. My results indicate an overall influence of algal turbidity on the antipredator and foraging behaviour of sticklebacks. In the presence of a potential predator, the use of the sheltered habitat was more pronounced at higher turbidity. Besides this, sticklebacks reduced their activity levels with predator presence at higher turbidity and shoot density levels, suggesting a possible antipredator adaptation to avoid a predator. When exposed to a sudden appearance of an avian predator, sticklebacks showed a weaker antipredator response in turbid water, which suggests that turbidity degrades the risk assessment capabilities of sticklebacks. I found an effect of group size but not turbidity in the proportion of sticklebacks that fled to the shelter area, which indicates that sticklebacks are able to communicate among group members at the experimental turbidity levels. I found an overall negative effect of turbidity on food intake. Both turbidity and changes in the proportion of prey sizes played a significant role in a stickleback’s prey selection. At lower turbidity levels (clear <1 and 5 NTU) sticklebacks showed preferences for large prey, whereas in more turbid conditions and when the proportion of large to small prey increased sticklebacks became increasingly random in their prey selection. Finally, my results showed that groups of sticklebacks disperse themselves between feeding stations according to the reward ratios following the predictions of the ideal free distribution theory. However, they took a significantly longer time to reach the equilibrium distribution in turbid water than in clear water. In addition, they showed a slower response to changes in resource distribution in a turbid environment. These findings suggest that turbidity interferes with the information transfer among group foragers. It is important to understand that aquatic animals are often exposed to a degraded environment. The findings of this thesis suggest that algal turbidity negatively affects their behavioural performance. The results also shed light on the underlying behavioural strategies of sticklebacks in turbid conditions that might help them adapt to an altered environmental situation and increase their survival. In conclusion, I hold that although algal turbidity has detrimental effects on the antipredator and foraging behaviour of sticklebacks, their behavioural adjustment might help them adapt to a changing environment.
Resumo:
Living nature consists of countless organisms, which are classified into millions of species. These species interact in many ways; for example predators when foraging on their prey, insect larvae consuming plants, and pathogenic bacteria drifting into humans. In addition, abiotic nature has a great initiative impact on life through many factors (including sunlight, ambient temperature, and water. In my thesis, I have studied interactions among different life forms in multifaceted ways. The webs of these interactions are commonly referred to as food webs, describing feeding relationships between species or energy transfer from one trophic level to another. These ecological interactions – whether they occur between species, between individuals, or between microorganisms within an individual – are among the greatest forces affecting natural communities. Relationships are tightly related to biological diversity, that is, species richness and abundances. A species is called a node in food web vocabulary, and its interactions to other species are called links. Generally, Artic food webs are considered to be loosely linked, simple structures. This conception roots into early modern food webs, where insects and other arthropods, for example, were clumped under one node. However, it has been shown that arthropods form the greatest part of diversity and biomass both in the tropics and in Arctic areas. Earlier challenges of revealing the role of insects and microorganisms in interactions webs have become possible with the help of recent advances in molecular techniques. In the first chapter, I studied the prey diversity of a common bat, Myotis daubentonii, in southwestern Finland. My results proved M. daubentonii being a versatile predator whose diet mainly consists of aquatic insects, such as chironomid midges. In the second chapter, I expanded the view to changes in seasonal and individual-based variation in the diet of M. daubentonii including the relationship between available and observed prey. I found out that chironomids remain the major prey group even though their abundance decreases in proportion to other insect groups. Diet varied a lot between individuals, although the differences were not statistically significant. The third chapter took the study to a large network in Greenland. I showed that Artic food webs are very complex when arthropods are taken into account. In the fourth chapter, I examined the bacterial flora of M. daubentonii and surveyed the zoonotic potential of these bacteria. I found Bartonella bacteria, of which one was described as a new species named after the locality of discovery. I have shown in my thesis that Myotis daubentonii as a predator links many insect species as well as terrestrial and aquatic environments. Moreover, I have exposed that Arctic food webs are complex structures comprising of many densely linked species. Finally, I demonstrated that the bacterial flora of bats includes several previously unknown species, some of which could possibly turn in to zoonosis. To summarize, molecular methods have untied several knots in biological research. I hope that this kind of increasing knowledge of the surrounding nature makes us further value all the life forms on earth.
Resumo:
The study approaches student travel from the perspective of postmodern consumption. The background is in the observation that the student travel market has a vast potential, but it is not necessarily capitalized upon to the extent it could. This might partly have to do with the peculiarities of postmodernity: consumption is characterized by unpredictability and abstract motives. The research questions are built around what constitutes student travel consumption and how can students be categorized according to motivation, behaviour and values. Also identity and expressiveness are present and it is evaluated, if travel services facilitate these background is the observation that the student travel market has a vast potential, but it is not necessarily capitalized upon to the extent it could be. This might partly have to do with the peculiarities of postmodernity: consumption is characterized by unpredictability and abstract motives. The research questions are built around what constitutes student travel consumption and how can students be categorized according to motivation, behaviour and values. Also identity and expressiveness are present and it is evaluated whether travel services facilitate these constructs. The topic is approached by discovering the key concepts such as self-identity. This was done in order to create survey questions that reflect the underlying theories. The survey was sent to chosen student groups of Turku School of Economics. The data was analyzed using statistical methods, mainly principal component analysis, in order to categorize students’ motives and behaviour into distinct profiles. The findings indicate that students have a high level of awareness in their travel consumption choices. Travel services seem to facilitate identity and lifestyle expressiveness, one central dimension of postmodernity. Psychographics such as motivation seem to work well as a segmentation criteria when it comes to the student traveler market. Travel offers students an opportunity for relaxation, escape, enjoyment and gaining new experiences and social contacts. Furthermore, the enjoyment of the travel experience extends to the pre- and post-trip time.
Resumo:
In marine benthic communities, herbivores consume a considerable proportion of primary producer biomass and, thus, generate selection for the evolution of resistance traits. According to the theory of plant defenses, resistance traits are costly to produce and, consequently, inducible resistance traits are adaptive in conditions of variable herbivory, while in conditions of constant/strong herbivory constitutive resistance traits are selected for. The evolution of resistance plasticity may be constrained by the costs of resistance or lack of genetic variation in resistance. Furthermore, resource allocation to induced resistance may be affected by higher trophic levels preying on herbivores. I studied the resistance to herbivory of a foundation species, the brown alga Fucus vesiculosus. By using factorial field experiments, I explored the effects of herbivores and fish predators on growth and resistance of the alga in two seasons. I explored genetic variation in and allocation costs of resistance traits as well as their chemical basis and their effects on herbivore performance. Using a field experiment I tested if induced resistance spreads via water-borne cues from one individual to another in relevant ecological conditions. I found that in the northern Baltic Sea F. vesiculosus communities, strength of three trophic interactions strongly vary among seasons. The highly synchronized summer reproduction of herbivores promoted their escape from the top-down control of fish predators in autumn. This resulted into large grazing losses in algal stands. In spring, herbivore densities were low and regulated by fish, which, thus,enhanced algal growth. The resistance of algae to herbivory increased with an increase in constitutive phlorotannin content. Furthermore, individuals adopted induced resistance when grazed and when exposed to water-borne cues originating from grazing of conspecific algae both in the laboratory and in field conditions. Induced resistance was adopted to a lesser extent in the presence of fish predators. The results in this thesis indicate that inducible resistance in F. vesiculosus is an adaptation to varying herbivory in the northern Baltic Sea. The costs of resistance and strong seasonality of herbivory have likely contributed to the evolution of this defense strategy. My findings also show that fish predators have positive cascading effects on F. vesiculosus which arise via reduced herbivory but possibly also through reduced resource allocation to resistance. I further found evidence that the spread of resistance via water-borne cues also occurs in ecologically realistic conditions in natural marine sublittoral. Thus, water-borne induction may enable macroalgae to cope with the strong grazing pressure characteristic of marine benthic communities. The results presented here show that seasonality can have pronounced effects on the biotic interactions in marine benthic communities and thereafter influence the evolution of resistance traits in primary producers.
Resumo:
This qualitative study examined resilience factors of eight university and college students with learning disabilities as revealed through retrospective interviews. This study has added to the existing literature surrounding resilience especially as it relates to individuals with learning disabilities. This study may provide additional insight into the emotional impacts of repeated and chronic risks on students with learning disabilities. The major themes that emerged using the interpretive phenomenological analysis method (Smith & Osborn, 2003) were organized under these four major headings: Challenges and Obstacles, Surviving Challenges, Supportive Conditions, and A Journey of Discovery and Hope. An adaptation of the listening guide analytical method (Gilligan, Spencer, Weinberg, & Bertsch, 2003) was also utilized and offered a more personal depiction of the participants and an exploration of the unique contributions their stories made to this study. Specifically, a theme of feeling trapped/wanting to escape emerged as a reaction to adversity faced during elementary school years. Furthennore, this study has demonstrated that for several of the participants, the benefits of positive outlets extended beyond nurturing areas of strength and self-esteem to also include the provision of a short respite from their challenges and enhanced feelings of overall well-being. Additionally, this study may add to the existing literature surrounding character traits evident in resilient students, specifically highlighting the significance of optimism and selfacceptance.
Resumo:
A dispersal polymorphism may exist in emigrants from cyclic populations of Microtus '~nnsylvanicus biasing trap-revealed movements of unenclosed animals in favour of sedentary or colonizing individuals. The dispersal tendency of emigrants from an enclosed population was investigated by releasing animals via tubes into one of two adjacent enclosures, one vacant and one inhabited. Individuals from the enclosed population were monitored for age, sex, weight and electrophoretically detectable serum transferrin genotype in an intensive live-trapping program. In 1973 the minimum number alive in the introduced enclosed study population reached approximately l67/ha when breeding stopped in October. In 1974 intensive breeding increased the population density to 333/ha by mid-July when a long decline in numbers and breeding intensity began without an intervening plateau. An adjacent unenclosed area had a much lower density and longer breeding season in 1974. The growth rate of young males in the enclosed population tended to be lowest during the decline period in 1974. Survival of the enclosed population was high throughout but was lowest during the decline phase in both sexes, especially males. Low transferrin heterozygote survival during the decline coincided with a significant heterozygote deficiency in females whereas in males genotype frequencies did not depart from Hardy-Weinberg equilibrium values throughout th.e study. Twenty-nine suitable ani.mals were released during the decline in five periods from July to November 1974. The proportions of males and transferrin heterozygotes in the released graun were generally greater than in the source population~ In the test enclosures 21% of the released animals continued their movement through the vacant area while 41% (no significant difference) moved through the inhabited enclosure. In the vacant test area, females had a greater tendency than males to continue dispersal whereas no difference was noted in the inhabited area. Low frequency of captures in the tubes, predator disturbances and cold weather forced the termination of the study. The role of dispersal as a population regulating mechanism was further substantiated. The genetic differences between emigrant and resident animals lend support to Howard's hypothesis that a genetic polymorphism influences the tendency to disperse. Support is also given to Myers' and Krebs' contention that among dispersers an additional density dependent polymorphism influences the distance dispersed.
Resumo:
In order to fully understand an organism's behaviours the interactions between multiple enemies or selective pressures need to be considered, as these interactions are usually far more complex than the simple addition of their effects in isolation. In this thesis, I consider the impact of multiple enemies (fish predators and parasites) on the behaviour of three larval anurans (Lithobates sylvaticus, L. clamitans and L. catesbeianus). I also determine whether species that differ in life-histories and habitat preferences possess different antipredator mechanisms and how this affects species responses to multiple enemies. I show that the three Ranid larvae respond differently to the trade-off imposed by the presence of both fish predators and trematode parasites within the environment. The two more permanent pond breeders (L. clamitans and L. catesbeianus) increased activity when in the combined presence of predators and parasites. In contrast, the temporary pond breeder (L. sylvaticus) decreased activity in the combined presence of predator and parasites, in the same manner as they responded to fish alone. Further, the presence of fish along with parasites increased the susceptibility of both L. sylvaticus and L. clamitans to trematode infection, whereas parasite infection in L. catesbeianus was unaffected by the presence of fish. A second experiment to assess palatability of the three anuran species to fish, revealed a range of palatabilities, with L. catesbeianus being least palatable, L. clamitans being somewhat unpalatable, and L. sylvaticus being highly palatable. This result helps to explain the species differences in tthe observed behaviour to the combined presence of fish and parasites. In conclusion, the results from this study highlight the importance of considering multiple selective pressures faced by organisms and how this shapes their behaviour.
Resumo:
A semi-weekly paper that was published from 1801 to 1817. It was previously called the Independent chronicle and the universal advertiser, and was later the Independent chronicle and Boston patriot (Semiweekly). Publishers were Abijah Adams and Ebenezer Rhoades. Topics of interest in this issue include: Page 1: report of Independence Day celebration including multiple toasts to the military; Page 2: report of South Carolina militia marching home; report of U.S. schooner Alligator being lost to a tornado in Port Royal; report of 10,000 militia and 2,000 regular Army troops to be used in defense of the District of Columbia and vicinity; report U.S. is to try to raise 100,000 militia for defense; news of British deserters providing information to the U.S.; report of skirmishes along the U.S. coast; statement from U.S. Navy Capt. David Porter stating he had taken possession of Sir Henry Martin's Island; report of British troops burning a militia barracks in Lewiston, N.Y.; 4 accounts of the battle of Chippewa and the taking of Fort Erie; statement from Maj. Gen. Brown in praise of his troops in the battle of Chippewa; copy of General Brown's orders to attack at Fort Erie; essay arguing against U.S. citizens boarding enemy ships; report of peace treaty rumours; Page 3: account of Capt. Porter's capture and subsequent escape from the British; list of American prisoners held on the British ship Nymph; report of British cargo ship captured by U.S. war ship; Proclamation from James Madison pardoning military deserters if they return to military service; announcement to officers and soldiers in the military offering reward for the return of military deserters; Page 4: 2 reward advertisements for return of military deserters;
Resumo:
Rats produce ultrasonic vocalizations that can be categorized into two types of ultrasonic calls based on their sonographic structure. One group contains 22-kHz ultrasonic vocalization (USVs), characterized by relatively constant (flat) frequency with peak frequency ranging from 19 to 28-kHz, and a call duration ranging between 100 – 3000 ms. These vocalization can be induced by cholinomimetic agents injected into the ascending mesolimbic cholinergic system that terminates in the anterior hypothalamic-preoptic area (AH-MPO) and lateral septum (LS). The other group of USVs contains 50-kHz USVs, characterized by high peak frequency, ranging from 39 to 90-kHz, short duration ranging from 10-90 ms, and varying frequency and complex sonographic morphology. These vocalizations can be induced by dopaminergic agents injected into the nucleus accumbens, the target area for the mesolimbic dopaminergic system. 22-kHz USVs are emitted in situations that are highly aversive, such as proximity of a predator or anticipation of a foot shock, while 50 kHz USVs are emitted in rewarding and appetitive situations, such as juvenile play behaviour or anticipation of rewarding electrical brain stimulation. The activities of these two mesolimbic systems were postulated to be antagonistic to each other. The current thesis is focused on the interaction of these systems indexed by emission of relevant USVs. It was hypothesized that emission of 22 kHz USVs will be antagonized by prior activation of the dopaminergic system while emission of 50 kHz will be antagonized by prior activation of the cholinergic system. It was found that injection of apomorphine into the shell of the nucleus accumbens significantly decreased the number of carbachol-induced 22 kHz USVs from both AH-MPO and LS. Injection of carbachol into the LS significantly decreased the number of apomorphine-induced 50 kHz USVs from the shell of the nucleus accumbens. The results of the study supported the main hypotheses that the mesolimbic dopaminergic and cholinergic systems function in antagonism to each other.
Resumo:
Rats produce ultrasonic vocalizations that can be categorized into two types of ultrasonic calls based on their sonographic structure. One group contains 22-kHz ultrasonic vocalization (USVs), characterized by relatively constant (flat) frequency with peak frequency ranging from 19 to 28-kHz, and a call duration ranging between 100 – 3000 ms. These vocalization can be induced by cholinomimetic agents injected into the ascending mesolimbic cholinergic system that terminates in the anterior hypothalamic-preoptic area (AH-MPO) and lateral septum (LS). The other group of USVs contains 50-kHz USVs, characterized by high peak frequency, ranging from 39 to 90-kHz, short duration ranging from 10-90 ms, and varying frequency and complex sonographic morphology. These vocalizations can be induced by dopaminergic agents injected into the nucleus accumbens, the target area for the mesolimbic dopaminergic system. 22-kHz USVs are emitted in situations that are highly aversive, such as proximity of a predator or anticipation of a foot shock, while 50 kHz USVs are emitted in rewarding and appetitive situations, such as juvenile play behaviour or anticipation of rewarding electrical brain stimulation. The activities of these two mesolimbic systems were postulated to be antagonistic to each other. The current thesis is focused on the interaction of these systems indexed by emission of relevant USVs. It was hypothesized that emission of 22 kHz USVs will be antagonized by prior activation of the dopaminergic system while emission of 50 kHz will be antagonized by prior activation of the cholinergic system. It was found that injection of apomorphine into the shell of the nucleus accumbens significantly decreased the number of carbachol-induced 22 kHz USVs from both AH-MPO and LS. Injection of carbachol into the LS significantly decreased the number of apomorphine-induced 50 kHz USVs from the shell of the nucleus accumbens. The results of the study supported the main hypotheses that the mesolimbic dopaminergic and cholinergic systems function in antagonism to each other.
Resumo:
Temperature regulation is a necessary part of maintaining life, as most biological processes are influenced by temperature. ThermoTRP channels are considered the primary thermosensors in endotherms, but little is known regarding their function in ectotherms. The goal of this study is to establish TRPM8, a cold sensing channel, as a participant in normal thermoregulation of the bearded dragon (Pogona vitticeps), an ectotherm. Animals were placed inside a ramping temperature shuttle box to assess the common behavioural thermoregulatory strategy of shuttling. Shuttling involves the periodic movement between cold and warm environments to maintain body temperature at moderate levels. The temperatures for cold and warm escapes represent sensory thresholds for inducing the shuttling thermoeffector. Animals were administered with: 1) an injection of the TRM8 antagonist capsazepine, 2) an injection of the TRPM8 agonist menthol, and 3) menthol applied topically. No effect was observed with injected drugs, but topical menthol resulted in a 2-3oC rise in the ambient temperature threshold and 1-2oC rise in skin temperature threshold for escape from the cold compartment. In an additional experiment, gaping behaviour, a warm temperature thermoregulatory strategy, was assessed. No effect was observed in this behaviour when the same dose of menthol was applied topically. These results point to a role for TRPM8 only in thermoregulation as it relates to cold temperature sensation in lizards, since it does not participate in regulating warm temperature behaviours such as gaping.