956 resultados para Precipitation radar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an article in the December 2012 issue of The Journal of Trauma and Acute Care Surgery, several author names were misprinted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water stable isotope ratios and net snow accumulation in ice cores are commonly interpreted as temperature or precipitation proxies. However, only in a few cases has a direct calibration with instrumental data been attempted. In this study we took advantage of the dense network of observations in the European Alpine region to rigorously test the relationship of the annual and seasonal resolved proxy data from two highly resolved ice cores with local temperature and precipitation. We focused on the time period 1961–2001 with the highest amount and quality of meteorological data and the minimal uncertainty in ice core dating (±1 year). The two ice cores were retrieved from the Fiescherhorn glacier (northern Alps, 3900 m a.s.l.), and Grenzgletscher (southern Alps, 4200 m a.s.l.). A parallel core from the Fiescherhorn glacier allowed assessing the reproducibility of the ice core proxy data. Due to the orographic barrier, the two flanks of the Alpine chain are affected by distinct patterns of precipitation. The different location of the two glaciers therefore offers a unique opportunity to test whether such a specific setting is reflected in the proxy data. On a seasonal scale a high fraction of δ18O variability was explained by the seasonal cycle of temperature (~60% for the ice cores, ~70% for the nearby stations of the Global Network of Isotopes in Precipitation – GNIP). When the seasonality is removed, the correlations decrease for all sites, indicating that factors other than temperature such as changing moisture sources and/or precipitation regimes affect the isotopic signal on this timescale. Post-depositional phenomena may additionally modify the ice core data. On an annual scale, the δ18O/temperature relationship was significant at the Fiescherhorn, whereas for Grenzgletscher this was the case only when weighting the temperature with precipitation. In both cases the fraction of interannual temperature variability explained was ~20%, comparable to the values obtained from the GNIP stations data. Consistently with previous studies, we found an altitude effect for the δ18O of −0.17‰/100 m for an extended elevation range combining data of the two ice core sites and four GNIP stations. Significant correlations between net accumulation and precipitation were observed for Grenzgletscher during the entire period of investigation, whereas for Fiescherhorn this was the case only for the less recent period (1961–1977). Local phenomena, probably related to wind, seem to partly disturb the Fiescherhorn accumulation record. Spatial correlation analysis shows the two glaciers to be influenced by different precipitation regimes, with the Grenzgletscher reflecting the characteristic precipitation regime south of the Alps and the Fiescherhorn accumulation showing a pattern more closely linked to northern Alpine stations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979–2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located in its interior. This study further includes a comprehensive comparison of high precipitation in ERA-Interim with precipitation data from the Antarctic Mesoscale Prediction System (AMPS) and snow accumulation measurements from automatic weather stations (AWSs), with the limitations of such a comparison being discussed. The ERA-Interim and AMPS precipitation data agree very well. However, the correspondence between high precipitation in ERA-Interim and high snow accumulation at the AWSs is relatively weak. High-precipitation events at both Halvfarryggen and Kohnen are typically associated with amplified upper level waves. This large-scale atmospheric flow pattern is preceded by the downstream development of a Rossby wave train from the eastern South Pacific several days before the precipitation event. At the surface, a cyclone located over the Weddell Sea is the main synoptic ingredient for high precipitation both at Halvfarryggen and at Kohnen. A blocking anticyclone downstream is not a requirement for high precipitation per se, but a larger share of blocking occurrences during the highest-precipitation days in DML suggests that these blocks strengthen the vertically integrated water vapor transport (IVT) into DML. A strong link between high precipitation and the IVT perpendicular to the local orography suggests that IVT could be used as a “proxy” for high precipitation, in particular over DML's interior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apollinaris Mons is an isolated volcano on Mars straddling the boundary between the southern highlands and the northern plains. One of its most distinctive features is its massive fan-shaped deposit that extends from a breach on its summit to distances of more than 150 km and drapes its entire southern flank. The composition and formation mechanism of these deposits remains controversial. We investigate the radar properties of the fan deposits (FD) of Apollinaris Mons using low-frequency sounding radar data in combination with high-resolution images and crater-size frequency analysis to constrain their inner shape and bulk composition. Our analysis indicates that the FD attains an irregular thickness and is gradually thinner towards their lateral margins. The crater-size frequency analysis shows that they may have undergone repeated resurfacing, which is suggestive of long-term evolution. Our analysis of Shallow Radar (SHARAD) radargrams traversing different sections of the FD reveals multiple and different subsurface interfaces among the radargrams crossing the thinnest part, which suggests a layered and complex inner shape. Our estimates for the bulk real part of the dielectric constant of the FD ranges from 3 to 5, which is consistent with an icy-silicate mixture or pyroclastic composition. Therefore, we conclude that lahars or pyroclastic flows are the most likely mechanism that created the FD, yet we cannot rule out additional contributions from lava flows. A combination of multiple processes is also possible since the deposits appear to have been modified by fluvial processes at a later stage of their formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a method for rapid identification and precise quantification of slope deformation using a portable radar interferometer. A rockslide with creep-like behavior was identified in the rugged and inaccessible headwaters of the Illgraben debris-flow catchment, located in the Central Swiss Alps. The estimated volume of the moving rock mass was approximately 0.5 x 10(6) m(3) with a maximum daily (3-D) displacement rate of 3 mm. Fast scene acquisition in the order of 6 s/scene led to uniquely precise mapping of spatial and temporal variability of atmospheric phase delay. Observations led to a simple qualitative model for prediction of atmospheric disturbances using a simple model for solar radiation, which can be used for advanced campaign planning for short observation periods (hours to days).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is the edited translation of the paper by Walter Findeisen “Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung” (Colloidal meteorological processes in the formation of precipitation) that was published 1938 in the Meteorologische Zeitschrift 55, 121–133

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality ofa regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mediterranean region has been identified as a global warming hotspot, where future climate impacts are expected to have significant consequences on societal and ecosystem well-being. To put ongoing trends of summer climate into the context of past natural variability, we reconstructed climate from maximum latewood density (MXD) measurements of Pinus heldreichii (1521–2010) and latewood width (LWW) of Pinus nigra (1617–2010) on Mt. Olympus, Greece. Previous research in the northeastern Mediterranean has primarily focused on inter-annual variability, omitting any low-frequency trends. The present study utilizes methods capable of retaining climatically driven long-term behavior of tree growth. The LWW chronology corresponds closely to early summer moisture variability (May–July, r = 0.65, p < 0.001, 1950–2010), whereas the MXD-chronology relates mainly to late summer warmth (July–September, r = 0.64, p < 0.001; 1899–2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = −0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth—early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700–1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availabilityobserved in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.