993 resultados para Pre-boundary lengthening
Resumo:
Consider the Royden compactification R* of a Riemannian n-manifold R, Γ = R*\R its Royden boundary, Δ its harmonic boundary and the elliptic differential equation Δu = Pu, P ≥ 0 on R. A regular Borel measure mP can be constructed on Γ with support equal to the closure of ΔP = {q ϵ Δ : q has a neighborhood U in R* with UʃᴖRP ˂ ∞ }. Every enegy-finite solution to u (i.e. E(u) = D(u) + ʃRu2P ˂ ∞, where D(u) is the Dirichlet integral of u) can be represented by u(z) = ʃΓu(q)K(z,q)dmP(q) where K(z,q) is a continuous function on Rx Γ . A P~E-function is a nonnegative solution which is the infimum of a downward directed family of energy-finite solutions. A nonzero P~E-function is called P~E-minimal if it is a constant multiple of every nonzero P~E-function dominated by it. THEOREM. There exists a P~E-minimal function if and only if there exists a point in q ϵ Γ such that mP(q) > 0. THEOREM. For q ϵ ΔP , mP(q) > 0 if and only if m0(q) > 0 .
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
The important features of the two-dimensional incompressible turbulent flow over a wavy surface of wavelength comparable with the boundary layer thickness are analyzed.
A turbulent field method using model equation for turbulent shear stress similar to the scheme of Bradshaw, Ferriss and Atwell (1967) is employed with suitable modification to cover the viscous sublayer. The governing differential equations are linearized based on the small but finite amplitude to wavelength ratio. An orthogonal wavy coordinate system, accurate to the second order in the amplitude ratio, is adopted to avoid the severe restriction to the validity of linearization due to the large mean velocity gradient near the wall. Analytic solution up to the second order is obtained by using the method of matched-asymptotic-expansion based on the large Reynolds number and hence the small skin friction coefficient.
In the outer part of the layer, the perturbed flow is practically "inviscid." Solutions for the velocity, Reynolds stress and also the wall pressure distributions agree well with the experimental measurement. In the wall region where the perturbed Reynolds stress plays an important role in the process of momentum transport, only a qualitative agreement is obtained. The results also show that the nonlinear second-order effect is negligible for amplitude ratio of 0.03. The discrepancies in the detailed structure of the velocity, shear stress, and skin friction distributions near the wall suggest modifications to the model are required to describe the present problem.
Resumo:
This thesis explores the dynamics of scale interactions in a turbulent boundary layer through a forcing-response type experimental study. An emphasis is placed on the analysis of triadic wavenumber interactions since the governing Navier-Stokes equations for the flow necessitate a direct coupling between triadically consist scales. Two sets of experiments were performed in which deterministic disturbances were introduced into the flow using a spatially-impulsive dynamic wall perturbation. Hotwire anemometry was employed to measure the downstream turbulent velocity and study the flow response to the external forcing. In the first set of experiments, which were based on a recent investigation of dynamic forcing effects in a turbulent boundary layer, a 2D (spanwise constant) spatio-temporal normal mode was excited in the flow; the streamwise length and time scales of the synthetic mode roughly correspond to the very-large-scale-motions (VLSM) found naturally in canonical flows. Correlation studies between the large- and small-scale velocity signals reveal an alteration of the natural phase relations between scales by the synthetic mode. In particular, a strong phase-locking or organizing effect is seen on directly coupled small-scales through triadic interactions. Having characterized the bulk influence of a single energetic mode on the flow dynamics, a second set of experiments aimed at isolating specific triadic interactions was performed. Two distinct 2D large-scale normal modes were excited in the flow, and the response at the corresponding sum and difference wavenumbers was isolated from the turbulent signals. Results from this experiment serve as an unique demonstration of direct non-linear interactions in a fully turbulent wall-bounded flow, and allow for examination of phase relationships involving specific interacting scales. A direct connection is also made to the Navier-Stokes resolvent operator framework developed in recent literature. Results and analysis from the present work offer insights into the dynamical structure of wall turbulence, and have interesting implications for design of practical turbulence manipulation or control strategies.
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
O caos determinístico é um dos aspectos mais interessantes no que diz respeito à teoria moderna dos sistemas dinâmicos, e está intrinsecamente associado a pequenas variações nas condições iniciais de um dado modelo. Neste trabalho, é feito um estudo acerca do comportamento caótico em dois casos específicos. Primeiramente, estudam-se modelos préinflacionários não-compactos de Friedmann-Robertson-Walker com campo escalar minimamente acoplado e, em seguida, modelos anisotrópicos de Bianchi IX. Em ambos os casos, o componente material é um fluido perfeito. Tais modelos possuem constante cosmológica e podem ser estudados através de uma descrição unificada, a partir de transformações de variáveis convenientes. Estes sistemas possuem estruturas similares no espaço de fases, denominadas centros-sela, que fazem com que as soluções estejam contidas em hipersuperfícies cuja topologia é cilíndrica. Estas estruturas dominam a relação entre colapso e escape para a inflação, que podem ser tratadas como bacias cuja fronteira pode ser fractal, e que podem ser associadas a uma estrutura denominada repulsor estranho. Utilizando o método de contagem de caixas, são calculadas as dimensões características das fronteiras nos modelos, o que envolve técnicas e algoritmos de computação numérica, e tal método permite estudar o escape caótico para a inflação.
Resumo:
[EU]Lan honen helburu nagusia eraikuntzan gehituko diren argi-babeski sistema mota desberdinak aurkeztea da, bertan ematen den energia kontsumoa murrizteko asmoz. Izan ere, argi naturalaren erabilpen egoki batek eraikinaren efizientzia hobetzera eramango gaitu. Horretarako, ezinbestekoa izango da baliabide hau behar bezala ezagutzea, argitasuna eta beharrezko babesa eskaintzeko, eta ondorioz, energia aurreztea lortzeko. Babes sistema egokiena aukeratu baino lehen, aldez aurretik sortu izan diren argi-babeski mota desberdinak aztertu izan dira. Horrez gain, eguzki erradiazioa neurtzeko metodo grafiko eta analitikoak ere aztertu dira. Ondoren, Ecotect programak eskaintzen dituen simulazioei esker, eguzki erradiazioaren datu zehatzagoak lortzeko asmoz, ikasketa horretan erabiliko den eraikinaren kokapena, orientazioa eta ezaugarriak erabaki dira. Behin prototipoa definituta, programa bidez lau babes sistema mota desberdinak aztertu dira, horrela babesik gabeko eraikinean lortutako datuak alderatzeko. Azterketa Bilbo eta Sevillan egitea erabaki izan da. Izan ere, bi hiriburu hauek klimatologian duten desberdintasuna argi-babeskien aukeraketan duen eragina aztertzeko aukeratu dira, gainera, orientazioak eta argi babeskien dimentsioek ere izan dute zer esana aukeraketa garaian. Horrez gain, argi-babeskiek sortutako itzala ere aztertu izan da. Horrela, sistema hauen jarrera orokorra ikusi daiteke, eta beraz, uda garaian babesteko eta negu garaian eguzki izpiak sartzen uzteko duten ahalmena ikusi da. Bukatzeko, aurretik lortutako datu guztiei esker, eta bai kokapena zein orientazioa kontutan hartuz, babes sistema egokiena aukeratu da, jakinik ezinbestekoa dela argitasuna, babesa eta aurrezte energetikoaren arteko oreka egoki bat lortzea.