966 resultados para Power circuit
Resumo:
This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.
Resumo:
n many parts of the world, the goal of electricity supply industries is always the introduction of competition and a lowering of the average consumer price. Because of this it has become much more important to be able to determine which generators are supplying a particular load, how much use each generator is making of a transmission line and what is generator's contribution to the system losses. In this paper a case study on generator contributions towards loads and transmission flows are illustrated with an equivalent 11-bus system, a part of Indian Southern Grid, based on the concepts of circuit flow directions, for normal and network contingency conditions.
Resumo:
For hybrid electric vehicles the batteries and the drive dc-link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies and the dc-link is at higher voltage to have higher efficiency on the motor side. Therefore a power interface between the batteries and the drive's dc-link is essential. This power interface should handle power flow from battery to motor, motor to battery, external genset to battery and grid to battery. This paper proposes a multi power port topology which is capable of handling multiple power sources and still maintains simplicity and features like obtaining any gain, wide load variations, lower output current ripple and capability of parallel battery energy due to the modular structure. The development and testing of a bi-directional fly-back DC-DC converter for hybrid electric vehicle is described in this paper. Simple hysteresis voltage control is used for DC link voltage regulation. The experimental results are presented to show the working of the proposed converter.
Resumo:
Bootstrap likelihood ratio tests of cointegration rank are commonly used because they tend to have rejection probabilities that are closer to the nominal level than the rejection probabilities of the correspond- ing asymptotic tests. The e¤ect of bootstrapping the test on its power is largely unknown. We show that a new computationally inexpensive procedure can be applied to the estimation of the power function of the bootstrap test of cointegration rank. The bootstrap test is found to have a power function close to that of the level-adjusted asymp- totic test. The bootstrap test estimates the level-adjusted power of the asymptotic test highly accurately. The bootstrap test may have low power to reject the null hypothesis of cointegration rank zero, or underestimate the cointegration rank. An empirical application to Euribor interest rates is provided as an illustration of the findings.
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
The systems formalism is used to obtain the interfacial concentration transients for power-law current input at an expanding plane electrode. The explicit results for the concentration transients obtained here pertain to arbitrary homogeneous reaction schemes coupled to the oxidant and reductant of a single charge-transfer step and the power-law form without and with a preceding blank period (for two types of power-law current profile, say, (i) I(t) = I0(t−t0)q for t greater-or-equal, slanted t0, I(t) = 0 for t < t0; and (ii) I(t) = I0tq for t greater-or-equal, slanted t0, I(t) = 0 for t < t0). Finally the potential transients are obtained using Padé approximants. The results of Galvez et al. (for E, CE, EC, aC) (J. Electroanal. Chem., 132 (1982) 15; 146 (1983) 221, 233, 243), Molina et al. (for E) (J. Electroanal. Chem., 227 (1987) 1 and Kies (for E) (J. Electroanal. Chem., 45 (1973) 71) are obtained as special cases.
Resumo:
With the rapid development of photovoltaic system installations and increased number of grid connected power systems, it has become imperative to develop an efficient grid interfacing instrumentation suitable for photovoltaic systems ensuring maximum power transfer. The losses in the power converter play an important role in the overall efficiency of a PV system. Chain cell converter is considered to be efficient as compared to PWM converters due to lower switching losses, modularized circuit layout, reduced voltage rating of the converter switches, reduced EMI. The structure of separate dc sources in chain cell converter is well suited for photovoltaic systems as there will b several separate PV modules in the PV array which can act as an individual dc source. In this work, a single phase multilevel chain cell converter is used to interface the photovoltaic array to a single phase grid at a frequency of 50Hz. Control algorithms are developed for efficient interfacing of the PV system with grid and isolating the PV system from grid under faulty conditions. Digital signal processor TMS320F 2812 is used to implement the control algorithms developed and for the generation of other control signals.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
A simple apparatus to measure the absolute thermoelectric power of solids in the temperature range 4·2–300K is described. The cryostat and the associated instrumentation is simple to operate. Representative data of measurements on metallic wire and pressed pellets are given. An accuracy of better than 10% in absolute thermopower can be obtained in this apparatus.
Resumo:
The educational kit was developed for power electronics and drives. The need and purpose of this kit is to train engineers with current technology of digital control in power electronics. The DSP is the natural choice as it is able to perform high speed calculations required in power electronics. The educational kit consists of a DSP platform using TI DSP TMS320C50 starter kit, an inverter and an induction machine-dc machine set. A set of experiments have been prepared so that DSP programming can be learned easily in a smooth fashion. Here the application presented is open loop V/F control of three phase induction using sine pulse width modulation technique.
Resumo:
We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.
Resumo:
Utilizing a circuit model [1, 2] of an induction motor, a simplified analysis of steady state performance of a voltage controlled induction motor (VCIM) drive is described in this paper. By solving a set of nonlinear algebraic equations which describe the VCIM drive under steady operation, the operating variables such as constant components of torque, rotor flux linkages, fundamental components of stator voltage and current and phase angle are obtained for any given value of slip, triggering angle and supply voltage.
Resumo:
Despite increasing interest in the discursive aspects of strategy, few studies have examined strategy texts and their power effects. We draw from Critical Discourse Analysis to better understand the power of strategic plans as a directive genre. In our empirical analysis, we examined the creation of the official strategic plan of the City of Lahti in Finland. As a result of our inductive analysis, we identified five central discursive features of this plan: self-authorization, special terminology, discursive innovation, forced consensus and deonticity. We argue that these features can, with due caution, be generalized and conceived as distinctive features of the strategy genre. We maintain that these discursive features are not trivial characteristics; they have important implications for the textual agency of strategic plans, their performative effects, impact on power relations and ideological implications.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.