988 resultados para Polymer-supported
Resumo:
Optical switching functionality is demonstrated in PCB integrated multimode passive polymer waveguides using a localised liquid-crystal cladding structure. Waveguide switching contrast of 15 dB is achieved with only 0.5 dB of on-state excess loss. © 2009 OSA.
Resumo:
Polymer composites comprising ultra-high molecular weight polyethylene (UHWMPE) fibers in a compliant matrix are now widely used in ballistic applications with varying levels of success. This is primarily due to a poor understanding of the mechanics of penetration of these composites in ballistic protection systems. In this study, we report experimental observations of the penetration mechanisms in four model systems impacted by a 12.7 mm diameter spherical steel projectile. The four model targets designed to highlight different penetration mechanisms in Dyneema® UHWMPE composites were: (i) a bare aluminum plate; (ii) the same plate fully encased in a 5.9 mm thick casing of Dyneema®; (iii) the fully encased plate with a portion of the Dyneema® removed from the front face so that the projectile impacts directly the Al plate; and (iv) the fully encased plate with a portion of the Dyneema® removed from the rear face so that the projectile can exit the Al plate without again interacting with the Dyneema®. A combination of synchronized high speed photography with three cameras, together with post-test examination of the targets via X-ray tomography and optical microscopy was used to elucidate the deformation and perforation mechanisms. The measurements show that the ballistic resistance of these targets increases in the order: bare Al plate, rear face cutout target, fully encased target and front face cutout target. These findings are explained based on the following key findings: (a) the ballistic performance of Dyneema® plates supported on a foundation is inferior to Dyneema® plates supported along their edges; (b) the apparent ballistic resistance of Dyneema® plates increases if the plates are given an initial velocity prior to the impact by the projectile, thereby reducing the relative velocity between the Dyneema® plate and projectile; and (c) when the projectile is fragmented prior to impact, the spatially and temporally distributed loading enhances the ballistic resistance of the Dyneema®. The simple model targets designed here have elucidated mechanisms by which Dyneema® functions in multi-material structures. © 2014 Elsevier Ltd.
Resumo:
Glass and polymer interstacked superlattice like nanolayers were fabricated by nanosecond-pulsed laser deposition with a 193-nm-ultraviolet laser. The individual layer thickness of this highly transparent thin film could be scaled down to 2 nm, proving a near atomic scale deposition of complex multilayered optical and electronic materials. The layers were selectively doped with Er3\+ and Eu3\+ ions, making it optically active and targeted for integrated sensor application. © The Authors.
Resumo:
Electro-optic switching in short-pitch polymer stabilized chiral nematic liquid crystals was studied and the relative contributions of flexoelectric and dielectric coupling were investigated: polymer stabilization was found to effectively suppress unwanted textural transitions of the chiral nematic liquid crystal and thereby enhance the electro-optical performance (high optical contrast for visible light, a near ideal optical hysteresis, fast electro-optic response). Test cells were studied that possessed interdigitated electrodes to electrically address the liquid crystal. Based on simulations, a well-fitted phenomenological description of the electro-optic response was derived considering both flexoelectro-optic and Kerr-effect based electro-optic response. © 2014 AIP Publishing LLC.
Resumo:
A method was presented for the determination of testosterone, methyltestosterone and progesterone in liquid cosmetics by coupling polymer monolith microextraction (PMME) to high performance liquid chromatography with UV detection. A poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium, which showed high extraction capacity towards these compounds. To achieve optimum extraction performance, several parameters relating to PMME were investigated, including extraction flow rate and pH value, inorganic salt and organic phase concentration of the sample matrix. By simple dilution with phosphate solution and filtering, the sample solution then could be directly injected into the device for extraction. The limits of detection of testosterone, methyltestosterone and progesterone were calculated to be 2, 3, 2, 8 and 4.6 mu g/L. Good linearity was achieved in the range of 10 to 1000 mu g/L with a linear coefficient. r value above 0. 996. Excellent method reproducibility was found by intra- and inter-day precisions, yielding the relative standard deviations of < 7. 7 % and < 7. 5 %, respectively. Recovery for them in the real samples was between 83% and 119%.
Resumo:
This paper compares a number of different moment-curvature models for cracked concrete sections that contain both steel and external fiber-reinforced polymer (FRP) reinforcement. The question of whether to use a whole-section analysis or one that considers the FRP separately is discussed. Five existing and three new models are compared with test data for moment-curvature or load deflection behavior, and five models are compared with test results for plate-end debonding using a global energy balance approach (GEBA). A proposal is made for the use of one of the simplified models. The availability of a simplified model opens the way to the production of design aids so that the GEBA can be made available to practicing engineers through design guides and parametric studies. Copyright © 2014, American Concrete Institute.
Resumo:
Hierarchical pillar arrays consisting of micrometer-sized polymer setae covered by carbon nanotubes are engineered to deliver the role of spatulae, mimicking the fibrillar adhesive surfaces of geckos. These biomimetic structures conform well and achieve better attachment to rough surfaces, providing a new platform for a variety of applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A simple, rapid and sensitive on-line method for simultaneous determination of four endocrine disruptors (17 beta-estradiol, estriol, bisphenol A and 17 alpha-ethinylestradiol) in environmental waters was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A poly(acrylamide-vinylpyridine-NAP-methylene bisacrylamide) monolith, synthesized inside a polyether ether ketone (PEEK) tube, was selected as the extraction medium. To achieve optimum extraction performance, several parameters were investigated, including extraction flow-rate, extraction time, and pH value, inorganic salt and organic solvent content of the sample matrix. By simply filtered with nylon membrane filter and adjusting the pH of samples to 6.0 with phosphoric acid, the sample solution then could be directly injected into the device for extraction. Low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method were achieved in the range of 0.006-0.10 ng/mL and 0.02-0.35 ng/mL from spiked lake waters, respectively. The calibration curves of four endocrine disruptors showed good linearity ranging from quantification limits to 50 ng/mL with a linear coefficient R-2 value above 0.9913. Good method reproducibility was also found by intra- and inter-day precisions, yielding the RSDs less than 12 and 9.8%, respectively. Finally, the proposed method was successfully applied to the determination of these compounds in several environmental waters. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Multimode polymer waveguide crossings exhibiting the lowest reported excess loss of 0.006dB/crossing and crosstalk values as low as -30dB are presented. Their potential for use in high-speed dense optical interconnection architectures is demonstrated. © 2007 Optical Society of America.
Resumo:
We report the growth of vertically-aligned nanotube forests, of up to 0.2 mm in height, on an 85:15 sp2:sp3 carbon support with Fe catalyst. This is achieved by purely-thermal chemical vapour deposition with the catalyst pretreated in inert environments. Pretreating the catalyst in a reducing atmosphere causes catalyst diffusion into the support and the growth of defective tubes. Other sp2:sp3 compositions, including graphite, tetrahedral amorphous carbon, and pure diamond, also lead to the growth of defective carbon morphologies. These results pave the way towards controlled growth of forests on carbon fibres. It could give rise to applications in enhanced fuel cell electrodes and better hierarchical carbon fibre-nanotube composites. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
A fluorescence immunoassay for human IgG (Ag) was developed using a pH-sensitive polymer prepared by thermal initiation or redox initiation polymerization as a carrier. In the competitive immunoassay, appropriate quantity of Ag was immobilized on the polymer and the standard Ag (or sample) solution, and a constant amount of fluorescein isothiocyanate labeled goat anti-human IgG antibody (Ab-FITC) was added. Immobilized Ag and the standard (or sample) Ag competed for binding to the Ab-FITC in 37 C in homogeneous format. After changing the pH to separate the polymer-immune complex precipitate, it was re-dissolved and determined by fluorescence method. The results showed that the immobilization efficiency, immunological reaction activities of immobilized Au and phase transition pH range were improved as Ag was immobilized by thermal initiation instead of redox initiation polymerization. Under optimum conditions, the calibration graphs for the Ag in both methods, thermal initiation and redox initiation, were linear over the concentration range of 0.0-1000 ng mL(-1), with detection limits 8 (thermal initiation) and 12 ng mL(1) (redox initiation), respectively. Moreover, some pH-sensitive polymer prepared only in organic solvent or under high temperature could also be used as an immunoreaction carrier by thermal initiation polymerization. Thermal initiation polymerization was a better immobilization mode. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Hybrid bulk heterojunction solar cells based on blend of poly(3-hexylthiophene) (P3HT) and TiO2 nanotubes or dye(N719) modified TiO2 nanotubes were processed from solution and characterized to research the nature of organic/inorganic hybrid materials. Compared with the pristine polymer P3HT and TiO2 nanoparticles/P3HT solar cells, the TiO2 nanotubes/P3HT hybrid solar cells show obvious performance improvement, due to the formation of the bulk heterojunction and charge transport improvement. A further improvement in the device performance can be achieved by modifying TiO2 nanotube surface with a standard dye N719 which can play a role in the improvement of both the light absorption and charge dissociation. Compared with the non-modified TiO2 nanotubes solar cells, the modified ones have better power conversion efficiency under 100 mW/cm(2) illumination with 500W Xenon lamp. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS quantum dots about 3-6 nm in diameter were synthesized with a novel method. Unlike the synthesis of oleic acid capped PbS quantum dots, the reactions were carried out in solution at room temperature, with the presence of a capping ligand species, MDMO-PPV. The quantum dots were used to fabricate bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT: PSS)/MDMO-PPV: PbS/Al structure. Current density-voltage characterization of the devices showed that after the addition of the MDMO-PPV capped PbS quantum dots to MDMO-PPV film, the performance was dramatically improved compared with pristine MDMO-PPV solar cells. (C) 2008 Elsevier Ltd. All rights reserved.