1000 resultados para Polymer Complexones
Resumo:
This paper presents a microelectrode voltammetric determination of heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of 7,7,8',8 '-tetracyanoquinodimethane (TCNQ) in polyelectrolytes. The diffusion coefficients are estimated using cyclic voltammetry under linear diffusion conditions, and the heterogeneous electron transfer rate constants are obtained under mixed linear and radial diffusion in the polyelectrolyte. k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction for reduction of TCNQ are obtained. On the other hand, the dependencies of D and k(s) of TCNQ on the size and charge of the counterion are compared in the polyelectrolyte. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.
Resumo:
Three kinds of PPV-based copolymers were synthesized and characterized. Their luminescent properties were investigated and discussed by PL spectrum, and time-dependence luminescent spectrum in film and solution stare. The results show that in the range of our study, the PL intensity and lifetime of luminescent decay increase with the increasing length of flexible segments and the solution diluting, indicating the tendency of the increase of luminescent efficiency.
Resumo:
In situ microscopic FTIR spectroelectrochemistry behavior of L-ascorbic acid (H(2)A) in polymer electrolyte is reported for the first time. H(2)A undergoes a two-step oxidation, The oxidation waves shift towards more anodic potential values when the scan rate increases. The peak currents of the oxidation waves are proportional to the square roots of scan rate up to 100 mV/s, The in situ infrared spectra suggest that the product of the oxidation be dehydroascorbic acid, which may exist as a dimer.
Resumo:
A novel combination of laser light scattering (LLS) and the micronization of a water-insoluble polymer into narrowly distributed nanoparticles stable in water has provided not only an accurate, reliable and microscopic method to study polymer biodegradation, but also a novel and fast way to evaluate the biodegradability of a given polymer. Using poly(epsilon-caprolactone) (PCL) as a typical example, we have shown that its biodegradation time can be shortened by a factor of more than 10(3) times in comparison with the time required to biodegrade a thin film (10 x 10 x 0.1 mm(3)). Moreover, the biodegradation kinetics can be in-situ monitored in terms of the decrease of the time-average scattering intensity and the particle number. A comparison of static and dynamic LLS results revealed that the enzyme, Lipase Pseudomonas, ''eats'' the PCL nanoparticles in an one-by-one manner and the enzymatic biodegradation of PCL follows a zero-order kinetics. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
From the angle of energy transformation an equation was obtained for the brittle transition in polymer blends. The effects of interparticle distance, temperature and strain rate on the brittle-tough transition in polymer blends were characterized by this equation. The calculations show that, for this transition: (1) increasing temperature and decreasing interparticle distance are equivalent and the shift factor increases with increasing temperature; (2) decreasing strain rate and decreasing interparticle distance have equivalent effects on the transition; (3) the strain rate must be optimum in order to find the brittle-tough transition phenomena for a given temperature region. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A comb-like polymer host(CBPE) as polymer electrolyte was synthesized by reacting poly(ethylene glycol) monomethyl ether (PEGME) with ethylene-maleic anhydride copolymer(EMAC) and endcapping the residual carboxylic acid with methanol. The synthetic process was followed by IR and the amorphous product characterized by IR and elemental analysis. There were two peaks in the plot of the ionic conductivity against Li salt concentration. The plot of log sigma vs. 1/(T - T-0) may exhibit dual VTF behavior when using the glass transition temperature of PEO of side chain as T-0. The comb-like polymer is a white rubbery solid which dissolves in acetone. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The diffusion coefficients (D) of quinhydrone were estimated in polymer electrolytes by using non-steady-state chronoamperometry and steady-state current voltammetry. The D values have been estimated in polyethylene glycol (PEG) containing different concentrations, and cations of supporting electrolytes, and in different solvents over a range of temperatures. The dependencies of electroactive probe diffusion coefficients on temperature, supporting electrolyte concentration and polymer chain length are discussed. The results show that D increases with increasing temperature and decreasing concentration of supporting electrolyte. The diffusion coefficient depends strongly on the length of polymer chain and decreases sharply with increasing polymer chain length. The contribution of electron self-exchange has been explored and it seems to be negligible here. (C) 1998 Elsevier Science S.A.
Resumo:
The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.
Resumo:
compatibilizing effect of graft copolymer, linear low density polyethylene-g-polystyrene (LLDPE-g-PS), on immiscible blends of LLDPE with styrene-butadiene-styrene triblock copolymer (SBS) has been investigated by means of C-13 CPMAS n.m.r. and d.s.c. techniques. The results indicate that LLDPE-g-PS is an effective compatibilizer for LLDPE/SBS blends. It was found that LLDPE-g-PS chains connect two immiscible components, LLDPE and SBS, through solubilization of chemically identical segments of LLDPE-g-PS into the amorphous region of LLDPE acid PS block domain of SBS, respectively. It was also found that LLDPE-g-PS chains connect the crystalline region of LLDPE by isomorphism, with serious effects on the supermolecular structure of LLDPE. The effect of LLDPE-g-PS on the supermolecular structure of LLDPE in the LLDPE/SBS blends obviously depends on the composition of the blends, but has little dependence on the PS grafting yields of LLDPE-g-PS. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Detection of DNA is a very important task for molecular biology and biomedical field. We have investigated electrochemical behavior of double-stranded DNA and single-stranded DNA adsorbed on conducting polymer modified electrode in presence of cobalt complex. The possibility of using such electrode as gene detector is discussed.
Resumo:
A soluble polymer emitting green color with high efficiency was synthesized. Bright green electroluminescence devices, both single layer and multilayer, were fabricated. The luminous efficiency was improved dramatically. Carrier injection from the electrodes to the emissive layer and concomitant green electroluminescence from the emissive layer were observed. A luminance of 920 cd/m(2) and luminous efficiency of 5.35 1m/W were achieved at a drive voltage of 15 V for the multilayer device. (C) 1997 Elsevier Science S.A.
Resumo:
The diffusion coefficients(D-app) and the heterogeneous electron-transfer rate constants(k(s)) for ferrocene in MPEG/salt electrolytes were determined by using steady-state voltammetry. The temperature dependence of the two parameters obeys the Arrhenius equation. The effect of the ionic size of six supporting electrolytes on diffusion and electron transfer dynamics of ferrocene was discussed.
Resumo:
The diffusion coefficients(D-app) and the heterogeneous electron transfer rate constants(k(s)) for ferrocene in several polymer solvents were determined by using steady-state voltammetry. The temperature dependence of the two parameters indicates Arrhenius behavior, The polymer solvent effects on diffusion and electron transfer dynamics of ferrocene were discussed.
Resumo:
The electrochemistry of Prussian blue mixed in a polymer medium containing MClO4 (M = Li+, Na+, K+, TBA(+)) as the supporting electrolyte was studied by means of solid-state voltammetry. This approach is new in Prussian blue studies. The behavior of PB in polymer electrolytes is somewhat similar to the well-known behavior for an electrochemically synthesized PB film in aqueous media. Besides, K+, Li+ and Na+ ions can also transport through the crystal of PB because of its zeolitic nature. The transport of TBA(+) ions is possible. Kinetic control lies in the diffusion of cations in and out of the lattice of Prussian blue. Reduction waves of Prussian blue depend on both the size and type of cations. PB is very stable upon electrochemical cycling in polymer electrolytes and air. This system may be used in rechargeable batteries and electrochromic devices.