945 resultados para Polyethylene Glycol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although metals and nitrogen/sulfur compounds have been the main concern of the petroleum industry, issues concerning the harmful effects on catalysts poisoning and product contamination by other contaminants such as oxygen-containing compounds have been raised. Trace amounts of carbonyl and carboxyl compounds in petroleum products can lead to catalyst poisoning. Additionally, oxygenates may be present in final polyethylene and polypropylene resins, affecting the quality of food packaging. In this work, we reviewed potential analytical approaches for oxygenates determination in petroleum products and report the features of each potential technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate), PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia) with ethane-1,2-diol (ethylene glycol) as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to (1) produce and characterize the flour obtained from two varieties of canihua, cupi and illpa-inia, and (2) evaluate the ability of these flours to form biofilms. The flours produced contain proteins, starches, lipids, organic substances containing phenol groups, and high percentages of unsaturated fatty acids. Films produced from the illpa variety presented lower water vapor permeability and larger Young’s modulus values than the films formed from the cupi variety. Both films were yellowish and displayed a high light blocking ability (as compared with polyethylene films), which can be attributed to the presence of phenolic compounds. Furthermore, they showed lesser solubility and water permeability than other polysaccharide films, which may be the result of the higher protein (12%–13.8%) and lipid (11%) contents in canihua flours, as well as the formation of a larger number of S–S bonds. On the other hand, these films presented a single vitreous transition temperature at low temperatures (< 0 °C), crystallization of the A and Vh types, and an additional diffraction peak at 2 = 7.5º, ascribed to the presence of essential fatty acids in canihua flour. Canihua flour can form films with adequate properties and shows promise for potential applications in food packaging, because it acts as a good barrier to incident ultraviolet light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taking into account the relevance of polyethylene for modern society and the role of catalysts for the production of this material, in the present work, we carried out a review of the main catalytic systems used in industry and academia. Most systems consist of coordination compounds, whose structural versatility allows the tuning of the characteristics of polyethylene for different applications. The structural aspects and chemical reactivity of such systems are discussed based on the existing literature and experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer recycling has been one of the most important trend in the petrochemical area. Among different technologies, biotechnological (enzymatic and/or microbial) degradation of polymers for the recovery of monomers and oligomers is environmentally-friendly and meet some green chemistry principles. In this work, conditions for the biotechnological degradation of some industrially-relevant polymers (e.g. poly(ethylene terephthalate) and polyethylene) were revised, and the main biocatalysts were identified. In most cases, biodegradation mechanisms are still unclear, thus being necessary more studies to unravel these promising bioprocesses. Polymer biodegradation studies also present considerable importance for other fields, including biomedical and agricultural.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Botrytis blight caused by Botrytis cinerea is an important disease of rose (Rosa hybrida) grown in greenhouses in Brazil. As little is known regarding the disease epidemiology under greenhouse conditions, pathogen survival in crop debris and as sclerotia was evaluated. Polyethylene bags with petals, leaves, or stem sections artificially infected with B. cinerea were mixed with crop debris in rose beds, in a commercial plastic greenhouse. High percentage of plant parts with sporulation was detected until 60 days, then sporulation decreased on petals after 120 days, and sharply decreased on stems or leaves after 90 days. Sporulation on petals continued for 360 days, but was not observed on stems after 150 days or leaves after 240 days. Although the fungus survived longer on petals, stems and leaves are also important inoculum sources because high amounts of both are deposited on beds during cultivation. Survival of sclerotia produced on PDA was also quantified. Sclerotia germination was greater than 75% in the initial 210 days and 50% until 360 days. Sclerotia weight gradually declined but they remained viable for 360 days. Sclerotia were produced on the buried petals, mainly after 90 days of burial, but not on leaves or stems. Germination of these sclerotia gradually decreased after 120 days, but lasted until 360 days. Higher weight loss and lower viability were observed on sclerotia produced on petals than on sclerotia produced in vitro

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eristettyjen muoviputkien kuljetus- tai asennusvaiheessa on mahdollista, että putken suojakuori rikkoutuu mekaanisen iskun vaikutuksesta ja putken sisään pääsee vettä. Huonoimmassa tapauksessa vesi pääsee etenemään suojakuoren ja eristekerroksen välissä talon sisälle ja aiheuttaa mittavat kosteusvahingot. Tämän diplomityön tarkoituksena oli selvittää, onko eristetylle muoviputkelle mahdollista toteuttaa tuotantotaloudellisesti tuplakuori-rakenne. Tuplakuoren tarkoituksena oli tässä työssä estää putken sisärakenteisiin päässeen veden eteneminen putken pitkittäissuunnassa. Diplomityössä käsiteltiin muutamia vaihtoehtoisia ratkaisuja toteuttaa tuplakuori-rakenne joista lopulta päädyttiin keskittymään muovikalvon käyttöön. Muovikalvon käytöllä oli lähinnä kaksi tarkoitusta. Tärkeimpänä oli saada muovikalvo sulamaan eristekerroksen ja suojakuoren väliin. Tällöin sulanut muovikalvo toimisi liiman tavoin ja hitsaisi eristekerroksen ja suojakuoren toisiinsa kiinni. Näin veden eteneminen eristekerroksen ja suojakuoren välissä saataisiin estetyksi. Muovikalvo oli myös tarkoitus kiristää eristepaketin päälle niin kireälle, että eristepaketin halkaisijaa saataisiin pienennettyä. Muovikalvon käyttöön perehdyttiin suorittamalla tuotantolinjalla koeajoja. Koeajoissa kokeiltiin erilaisia ja erikokoisia putkituotteita erilaisilla tuotantoparametreilla. Näin pyrittiin löytämään parhaat parametrit ja arvot, joilla muovikalvoa pystyttäisiin tulevaisuudessa käyttämään jatkuvassa tuotannossa. Koeajojen tuloksista voitiin havaita, että kalvoitetut putkituotteet käyttäytyivät tuotannossa hyvin eri tavoin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental challenges of plastic packaging industry have increased remarkably along with climate change debate. The interest to study carbon footprints of packaging has increased in packaging industry to find out the real climate change impacts of packaging. In this thesis the greenhouse gas discharges of plastic packaging during their life cycle is examined. The carbon footprint is calculated for food packaging manufactured from plastic laminate. The structure of the laminate is low density polyethylene (PE-LD) and oriented polypropylene (OPP), which have been joined together with laminating adhesive. The purpose is to find out the possibilities to create a carbon footprint calculating tool for plastic packaging and its usability in a plastic packaging manufacturing company. As a carbon footprint calculating method PAS 2050 standard has been used. In the calculations direct and indirect greenhouse gas discharges as well as avoided discharges are considered. Avoided discharges are born for example in packaging waste utilization as energy. The results of the calculations have been used to create a simple calculating tool to be used for similar laminate structures. Although the utilization of the calculating tool is limited to one manufacturing plant because the primary activity data is dependent of geographical location and for example the discharges of used energy in the plant. The results give an approximation of the climate change potential caused by the laminate. It is although noticed that calculations do not include all environmental impacts of plastic packaging´s life cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Styrene is used in a variety of chemical industries. Environmental and occupational exposures to styrene occur predominantly through inhalation. The major metabolite of styrene is present in two enantiomeric forms, chiral R- and S- hydroxy-1-phenyl-acetic acid (R-and S-mandelic acid, MA). Thus, the concentration of MA, particularly of its enantiomers, has been used in urine tests to determine whether workers have been exposed to styrene. This study describes a method of analyzing mandelic acid using molecular imprinting techniques and HPLC detection to perform the separation of diastereoisomers of mandelic acid. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting using (+) MA, (-) MA or (+) phenylalanine, (-) phenylalanine as templates. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were copolymerized in the presence of the template molecules. The bulk polymerization was carried out at 4ºC under UV radiation. The resulting MIP was grounded into 25~44¼m particles, which were slurry packed into analytical columns. After the template molecules were removed, the MIP-packed columns were found to be effective for the chromatographic resolution of (±)-mandelic acid. This method is simpler and more convenient than other chromatographic methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory part of the Master’s thesis introduces fibres with high tensile strength and elongation used in the production of paper or board. Strong speciality papers are made of bleached softwood long fibre pulp. The aim of the thesis is to find new fibres suitable for paper making to increase either tensile strength, elongation or both properties. The study introduces how fibres bond and what kind of fibres give the strongest bonds into fibre matrix. The fibres that are used the in manufacturing of non-wovens are long and elastic. They are longer than softwood cellulose fibres. The end applications of non-wovens and speciality papers are often the same, for instance, wet napkins or filter media. The study finds out which fibres are used in non-wovens and whether the same fibres could be added to cellulose pulp as armature fibres, what it would require for these fibres to be blended in cellulose, how they would bind with cellulose and whether some binding agents or thermal bonding, such as hot calendaring would be necessary. The following fibres are presented: viscose, polyester, nylon, polyethylene, polypropylene and bicomponent fibres. In the empiric part of the study the most suitable new fibres are selected for making hand sheets in laboratory. Test fibres are blended with long fibre cellulose. The test fibres are viscose (Tencel), polypropylene and polyethylene. Based on the technical values measured in the sheets, the study proposes how to continue trials on paper machine with viscose, polyester, bicomponent and polypropylene fibres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of organic matter that improves the physical, chemical and biological soil properties has been studied as an inducer of suppressiveness to soilborne plant pathogens. The objective of this work was to evaluate the effect of different sources and concentrations of organic matter on tomato bacterial wilt control. Two commercially available organic composts and freshly cut aerial parts of pigeon pea (Cajanus cajan) and crotalaria (Crotalaria juncea) were incorporated, in concentrations of 10, 20 and 30 % (v/v), into soil infested with Ralstonia solanacearum. The soil with the fresh organic matter of pigeon pea and crotalaria was incubated for 30 and 60 days before planting. Tomato seedlings of cv. Santa Clara were transplanted into polyethylene bags with 3 kg of the planting substrate (infested soil + organic matter). The wilting symptoms and percentage of flowering plants were evaluated for 45 days. All evaluated concentrations with incorporation and incubation for 30 days of aerial parts of pigeon pea and crotalaria controlled 100% tomato bacterial wilt. With 60 days of incubation, only the 10 % concentration of pigeon pea and crotalaria did not control the disease. These results suggest that soil incorporation of fresh aerial parts of pigeon pea and crotalaria is an effective method for bacterial wilt control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper industry is constantly looking for new ideas for improving paper products while competition and raw material prices are increasing. Many paper products are pigment coated. Coating layer is the top layer of paper, thus by modifying coating pigment also the paper itself can be altered and value added to the final product. In this thesis, synthesis of new plastic and hybrid pigments and their performance in paper and paperboard coating is reported. Two types of plastic pigments were studied: core-shell latexes and solid beads of maleimide copolymers. Core-shell latexes with partially crosslinked hydrophilic polymer core of poly(n-butyl acrylate-co-methacrylic acid) and a hard hydrophobic polystyrene shell were prepared to improve the optical properties of coated paper. In addition, the effect of different crosslinkers was analyzed and the best overall performance was achieved by the use of ethylene glycol dimethacrylate (EGDMA). Furthermore, the possibility to modify core-shell latex was investigated by introducing a new polymerizable optical brightening agent, 1-[(4-vinylphenoxy)methyl]-4-(2-henylethylenyl)benzene which gave promising results. The prepared core-shell latex pigments performed smoothly also in pilot coating and printing trials. The results demonstrated that by optimizing polymer composition, the optical and surface properties of coated paper can be significantly enhanced. The optimal reaction conditions were established for thermal imidization of poly(styrene-co-maleimide) (SMI) and poly(octadecene-co-maleimide) (OMI) from respective maleic anhydride copolymer precursors and ammonia in a solvent free process. The obtained aqueous dispersions of nanoparticle copolymers exhibited glass transition temperatures (Tg) between 140-170ºC and particle sizes from 50-230 nm. Furthermore, the maleimide copolymers were evaluated in paperboard coating as additional pigments. The maleimide copolymer nanoparticles were partly imbedded into the porous coating structure and therefore the full potential of optical property enhancement for paperboard was not achieved by this method. The possibility to modify maleimide copolymers was also studied. Modifications were carried out via N-substitution by replacing part of the ammonia in the imidization reaction with amines, such as triacetonediamine (TAD), aspartic acid (ASP) and fluorinated amines (2,2,2- trifluoroethylamine, TFEA and 2,2,3,3,4,4,4-heptafluorobuthylamine, HFBA). The obtained functional nanoparticles varied in size between 50-217 nm and their Tg from 150-180ºC. During the coating process the produced plastic pigments exhibited good runnability. No significant improvements were achieved in light stability with TAD modified copolymers whereas nanoparticles modified with aspartic acid and those containing fluorinated groups showed the desired changes in surface properties of the coated paperboard. Finally, reports on preliminary studies with organic-inorganic hybrids are presented. The hybrids prepared by an in situ polymerization reaction consisted of 30 wt% poly(styrene- co-maleimide) (SMI) and high levels of 70 wt% inorganic components of kaolin and/or alumina trihydrate. Scanning Electron Microscopy (SEM) images and characterization by Fourier Transform Infrared Spcetroscopy (FTIR) and X-Ray Diffraction (XRD) revealed that the hybrids had conventional composite structure and inorganic components were covered with precipitated SMI nanoparticles attached to the surface via hydrogen bonding. In paper coating, the hybrids had a beneficial effect on increasing gloss levels.