1000 resultados para Poly(A) tail
Resumo:
The shear-induced spiral-like morphology of a main-chain thermotropic liquid crystalline poly(aryl ether ketone) is observed and characterized by means of polarizing light microscopy, atomic force microscopy, transmission electron microscopy and electron diffraction techniques. The spiral-like texture is formed during shearing in the temperature range of liquid crystalline to isotropic transition (335-340 degreesC), and dispersed discontinuously in the mosaic matrix. Electron diffraction results indicate that the spiral exhibits orthorhombic lateral packing of the crystals and homeotropic alignment of the molecules. The spiral formation process and possible affecting factors are discussed.
Resumo:
The homoepitaxial crystallization in the films of a thermotropic liquid crystalline chloro-ply(aryl ether ketone) is studied by transmission electron microscopy (TEM) and electron diffraction (ED). The homoepitaxy takes place in the temperature range 330-320 degreesC, in which a highly-ordered smectic crystalline phase of the copolymer with a single-crystal-like banded structure is formed during the cooling process from the isotropic melt. The homoepitaxial crystallizations with angles of 32 degrees and 122 degrees between the two b axes are the major populations observed, and possess epitaxial contact planes of (100)(I)-(210)(II) and (010)(I)-(210)(II); respectively.
Resumo:
Tensile properties of poly (P-hydroxybutyrate)/poly (ethylene oxide) (PHB/PEO) blends were reported in this paper. It was found that the blends of PHB with different molecular-weight PEO exhibited different mechanical properties. The mechanical properties of the blends of PHB and PEO3 (M-w=0.3x10(6)) were very poor. However, the blends of PHB and PEO5 (M-w=5x10(6)) showed compatible in mechanical properties. Excellent synergism was observed not only in tensile stress and tensile elongation but also in modulus. Moreover, the ductility of the blends could be improved further under proper heat-treatment.
Resumo:
Novel water insoluble sodium sulfonate-functionalized poly(ether ether ketone)s containing cyclohexylidene in the main chain with degree of sulfonation up to 2.0 were synthesized from nucleophilic polycondensation of 5, 5'-carbonylbis (2-fluorobenzenesulfonate), 4, 4'-difluorobenzophenone and 4, 4'-cyclohexylidenebisphenol. The polymers showed excellent thermal stability and good water resistance as well. The DSC diagrams and WAXD patterns indicated an amorphous morphological structure of these polymers. A comprison of some properties between these copolymers and polymers derived from bisphenol A was given.
Resumo:
Poly(butylene succinate), (PBS) with different molecular weight was gamma -irradiated at different temperatures and various doses. PBS with high molecular weight and smaller peak area of crystal melting gave the highest gel content at the same temperatures and dose. A two-step irradiation (irradiation in molten state after irradiation at room temperature) gave the highest gel content in different conditions. This is due to the formation of network structure by pre-irradiation at room temperature that leads to less degradation. PBS prepared by two step irradiation was effective for improvement of heat stability because of high gel content formation. Unirradiated PBS sheets broke immediately at 110 degrees, while the irradiated sample (gel fraction, 50%) by a two step-method did not break even up to 200 minutes at 130 degreesC. The PBS sheets are biodegradable even after crosslinking.
Resumo:
The thermal stability, crystallization behavior and biodegradability of poly(beta -hydroxybutyrate) (PHB) grafted with maleic anhydride (MA) were studied by DSC,TGA, optical microscopy and WAXD. The results showed that thermal stability of maleated PHB was obviously improved, comparing with that of pure PHB. The temperature of decomposition was enhanced about 20 degreesC After grafting MA, the crystallization behavior of PHB changed evidently. The rate of spherulite growth decreased, the crystallization temperature from the melt state reduced, and the cold crystallization temperature from the glass state increased. With the increase in graft degree, the banding texture of spherulite became more distinct and orderly. Moreover, the introduction of MA groups promoted the biodegradation of PHB.
Resumo:
The structures of single crystals of syndiotactic poly(butene-1) in form I, produced by thin-film growth, are studied by transmission electron microscopy and electron diffraction. Bright-field electron microscopy observation shows that the single crystal exhibits a regular rectangular shape with the long axis along its crystallographic b-axis. Electron diffraction results indicate an isochiral C-centered packing of a-fold helical chains in an orthorhombic unit cell corresponding to the C222(1) space group, according to the model proposed in the literature. The differences with the polymorphic behavior of syndiotactic polypropylene concerning the formation and the stability of the isochiral mode of packing are outlined.
Resumo:
The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.
Resumo:
The FeCl3-doped three poly(3-alkylthiophenes) (P3ATs) in solid state, i.e. poly( 3-octylthiophenl) (P3OT), poly(3-dodecylthiophene) (P3ODT) and poly( 3-octadecylthiophene) (P3ODT), were investigated in this paper. In X-ray diffraction results, there are obvious variations of the interlayer and interlayer spacings in the layered structures of P3ATs. In addition, it is found that some orientations of the side-chain groups occur after the doping process. The infrared spectra have also shown the microstructural changes arising from the readjustments of the polymer chains due to the intervention of the dopant. The presence of dopant leads to the formation of bipolarons and polarons at the same time. The conductivity measurements reveal that the conductivity decreases with the increase of the length of sidechain group. We have also observed the relaxation behaviors in the conductivities of the doped polymers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The variation of lattice spacings of poly(iminosebacoyl iminodecamethylene) (nylon-10,10) with temperature was studied by wide-angle X-ray diffraction (WAXD) during both heating and cooling processes, which demonstrates a gradual and continuous transition with temperature. However, the crystal melts before the two peaks merge completely. Both WAXD and differential scanning calorimetry show that crystallization from molten sample results directly in the triclinic form. Additionally, this transition is thermodynamically reversible. Comparison of this transition with that of nylon-6,6, suggests that no hydrogen-bonded network is formed during or after the transition. We prefer to attribute this transition to asymmetrical thermal expansion in the nylon-10,10 crystals rather than to a true first-order phase transition. (C) 2001 Society of Chemical Industry.
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
A series of high sulfonated poly(ether ether ketone)s were prepared by copolymerization of sodium 5,5 ' -carbonylbis (2-fluorobenzenesulfonate)(2),4,4 ' -difluorobenzophenone (1) and bisphenol A(3) in the presence of potassium carbonate in dimethylsulfoxide. The copolymers were characterized by IR and DSC, The influence of degree of sulfonation on the properties of copolymers, such as component, thermal stability, solubility and filming ability, was studied.