994 resultados para Polarization (Nuclear physics)
Resumo:
Vols. for 1903- include Proceedings of the American Physical Society.
Resumo:
"Physics; Reactor technology--TID-4500, 36th ed."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
On cover: Brookhaven conference report. B. N. L. Associated Universities, Inc. under contract with U. S. Atomic Energy Commission.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 23.
Resumo:
Mode of access: Internet.
Resumo:
"DE84005862"--Label mounted on cover.
Resumo:
"Sponsored jointly by the USAEC and Columbia University."
Resumo:
"CONF-780766."
Resumo:
Includes bibliographical references.
Resumo:
This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.
Resumo:
A high resolution study of the quasielastic 2 H(e, e'p)n reaction was performed in Hall A at the Thomas Jefferson Accelerator Facility in Newport News, Virginia. The measurements were performed at a central momentum transfer of : q: ∼ 2400 MeV/c, and at a central energy transfer of ω ∼ 1500 MeV, a four momentum transfer Q2 = 3.5 (GeV/c)2, covering missing momenta from 0 to 0.5 GeV/c. The majority of the measurements were performed at Φ = 180° and a small set of measurements were done at Φ = 0°. The Hall A High Resolution Spectrometers (HRS) were used to detect coincident electrons and protons, respectively. Absolute 2H(e, e'p) n cross sections were obtained as a function of the recoiling neutron scattering angle with respect to [special characters omitted]. The experimental results were compared to a Plane Wave Impulse Approximation (PWIA) model and to a calculation that includes Final State Interaction (FSI) effects. Experimental 2H(e, e'p)n cross sections were determined with an estimated systematic uncertainty of 7%. The general features of the measured cross sections are reproduced by Glauber based calculations that take the motion of the bound nucleons into account (GEA). Final State Interactions (FSI) contributions were found to depend strongly on the angle of the recoiling neutron with respect to the momentum transfer and on the missing momentum. We found a systematic deviation of the theoretical prediction of about 30%. At small &thetas; nq (&thetas;nq < 60°) the theory overpredicts the cross section while at large &thetas; nq (&thetas;nq > 80°) the theory underestimates the cross sections. We observed an enhancement of the cross section, due to FSI, of about 240%, as compared to PWIA, for a missing momentum of 0.4 GeV/c at an angle of 75°. For missing momentum of 0.5 GeV/c the enhancement of the cross section due to the same FSI effects, was about 270%. This is in agreement with GEA. Standard Glauber calculations predict this large contribution to occur at an angle of 90°. Our results show that GEA better describes the 2H(e, e'p)n reaction.
Resumo:
QCD predicts Color Transparency (CT), which refers to nuclear medium becoming transparent to a small color neutral object produced in high momentum transfer reactions, due to reduced strong interaction. Despite several studies at BNL, SLAC, FNAL, DESY and Jefferson Lab, a definitive signal for CT still remains elusive. In this dissertation, we present the results of a new study at Jefferson Lab motivated by theoretical calculations that suggest fully exclusive measurement of coherent rho meson electroproduction off the deuteron is a favorable channel for studying CT. Vector meson production has a large cross section at high energies, and the deuteron is the best understood and simplest nuclear system. Exclusivity allows the production and propagation to be controlled separately by controlling Q 2, lf (formation length), lc (coherence length) and t. This control is important as the rapid expansion of small objects increases their interaction probability and masks CT. The CT signal is investigated in a ratio of cross sections at high t (where re-scattering is significant) to low t (where single nucleon reactions dominate). The results are presented over a Q2 range of 1 to 3 GeV2 based on the data taken with beam energy of 6 GeV.