895 resultados para Pneumococcal Vaccines
Resumo:
OBJETIVOS: Analisar a epidemiologia da doença meningocócica no Brasil e o impacto que as recentes evidências acumuladas com a incorporação das vacinas meningocócicas C conjugadas nos programas de imunização podem ter nas diferentes estratégias de uso dessas vacinas. FONTES DOS DADOS: Revisão nas bases de dados MEDLINE, SciELO e LILACS no período de 2000 a 2011. SÍNTESE DOS DADOS: No Brasil, a doença meningocócica é endêmica, com ocorrência periódica de surtos. Os maiores coeficientes de incidência ocorrem em lactentes, sendo o sorogrupo C responsável pela maioria dos casos, motivando a introdução da vacina meningocócica C conjugada no Programa Nacional de Imunizações, em 2010, para crianças menores de 2 anos. A introdução das vacinas meningocócicas C conjugadas nos programas de imunização na Europa, Canadá e Austrália mostrou-se efetiva, com dramática redução na incidência de doença causada pelo sorogrupo C, não apenas nos vacinados, mas também em não vacinados. A efetividade em longo prazo dessas vacinas mostrou-se dependente de uma combinação de persistência de anticorpos, memória imunológica e proteção indireta. Recentes evidências indicando que a persistência de anticorpos não é duradoura em crianças pequenas imunizadas e que a memória imunológica não é rápida o suficiente para protegê-las contra a doença enfatizam a importância da proteção indireta para manutenção da população protegida. CONCLUSÕES: A rápida queda de títulos de anticorpos em crianças vacinadas nos primeiros anos de vida sugere a necessidade de incorporarmos doses de reforço antes da adolescência, especialmente em locais como o Brasil, onde ainda não contamos com o efeito da proteção indireta da população.
Resumo:
Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.
Resumo:
O conhecimento dos custos hospitalares é de grande importância para os processos de tomada de decisão em saúde pública. O objetivo deste estudo foi estimar os custos hospitalares diretos relacionados à meningite pneumocócica em crianças com até 13 anos (inclusive), na cidade de São José dos Campos, São Paulo, Brasil, de janeiro de 1999 a dezembro de 2008. Foram obtidos dados de prontuários médicos. O cálculo foi realizado pelo método misto de mensuração das quantidades dos itens de custos e atribuição de valor aos itens consumidos (micro-costing e gross-costing). Os valores monetários referem-se a novembro de 2009, sendo expressos em reais. A análise das frequências e médias foi realizada pelo programa Epi Info versão 3.5.1. Foram notificados 41 casos. Os custos hospitalares diretos variaram de R$ 1.277,90 a R$ 19.887,56 (média = R$ 5.666,43), ou seja, 10 a 20 vezes maiores que o custo médio de internações pago pelo SUS. Os custos dos honorários profissionais foram os mais relevantes, seguidos pelos custos dos medicamentos, procedimentos, materiais e exames laboratoriais.
Resumo:
A focused and commented review on the impact of dermatologic diseases and interventions in the solidary act of donating blood is presented to dermatologists to better advise their patients. This is a review of current Brazilian technical regulations on hemotherapeutic procedures as determined by Ministerial Directive #1353/2011 by the Ministry of Health and current internal regulations of the Hemotherapy Center of Ribeirão Preto, a regional reference center in hemotherapeutic procedures. Criteria for permanent inaptitude: autoimmune diseases (>1 organ involved), personal history of cancer other than basal cell carcinoma, severe atopic dermatitis or psoriasis, pemphigus foliaceus, porphyrias, filariasis, leprosy, extra pulmonary tuberculosis or paracoccidioidomycosis, and previous use of etretinate. Drugs that impose temporary ineligibility: other systemic retinoids, systemic corticosteroids, 5-alpha-reductase inhibitors, vaccines, methotrexate, beta-blockers, minoxidil, anti-epileptic, and anti-psychotic drugs. Other conditions that impose temporary ineligibility: occupational accident with biologic material, piercing, tattoo, sexually transmitted diseases, herpes, and bacterial infections, among others. Discussion: Thalidomide is currently missing in the teratogenic drugs list. Although finasteride was previously considered a drug that imposed permanent inaptitude, according to its short halflife current restriction of 1 month is still too long. Dermatologists should be able to advise their patients about proper timing to donate blood, and discuss the impact of drug withdrawal on treatment outcomes and to respect the designated washout periods.
Resumo:
We conducted a phase I, double-blind, placebo-controlled trial to evaluate a new 5-valent oral rotavirus vaccine’s safety and immunogenicity profiles. Subjects were randomly assigned to receive 3 orally administered doses of a live-attenuated human-bovine (UK) reassortant rotavirus vaccine, containing five viral antigens (G1, G2, G3, G4 and G9), or a placebo. The frequency and severity of adverse events were assessed. Immunogenicity was evaluated by the titers of anti-rotavirus IgA and the presence of neutralizing antibodies anti-rotavirus. No severe adverse events were observed. There was no difference in the frequency of mild adverse events between experimental and control groups. The proportion of seroconversion was consistently higher in the vaccine group, for all serotypes, after each one of the doses. The 5-valent vaccine has shown a good profile of safety and immunogenicity in this small sample of adult volunteers.
Resumo:
NLRP3-inflammasome activation was evaluated in monocyte-derived dendritic cells (DC) obtained through IL-4 (IL4-DC) or IFN-α (IFN-DC) protocols and pulsed with chemically inactivated HIV-1. Inflammasome' genes expression and IL-1β secretion were compared in DC isolated from 15 healthy subjects (HC) and 10 HIV-1 infected individuals (HIV+). FINDINGS: Whether HIV was able to increased NLRP3-inflammasome genes expression and IL-1β secretion in IL4-DC from HC, the induction of inflammasome appeared significantly reduced in IFN-DC from HC, suggesting a different responsive state of IFN-DC compared to IL4-DC. No inflammasome activation was observed in IL4-DC as well as in IFN-DC derived from HIV + subjects, confirming previous findings on "unresponsive" state of DC derived from HIV + possibly due to chronic inflammatory state of these individuals. CONCLUSIONS: Our results showed that IFN-α differently modulates inflammasome expression during monocytes-DC in vitro differentiation. These findings could be of interest considering the on-going research about DC manipulation and therapeutic strategies for HIV + involving DC-based immune-vaccines.
Resumo:
Since 1999, Brazil has undertaken annual influenza vaccine campaigns, free of charge, targeting the elderly population, health professionals, and immune-deficient patients. We conducted a systematic review of literature in order to evaluate the effectiveness of the initiative. We used the keywords influenza, vaccine, Brazil and effectiveness to search the main databases. Thirty-one studies matched our inclusion and exclusion criteria. Influenza vaccine coverage among the elderly is high, though not as high as suggested by the official figures. Estimates on effectiveness are scarce. The majority come from ecological studies that show a modest reduction in mortality and hospital admissions due to influenza-related causes. Such reduction is not evident in the North and Northeastern states of Brazil, a finding that is probably related to the different seasonal pattern of influenza in equatorial and tropical regions. Brazilian epidemiologists still owe society better-designed studies addressing the effectiveness of influenza vaccine campaigns.
Resumo:
OBJETIVO: Avaliar a imunogenicidade e segurança da vacina contra hepatite B, após o aumento na concentração do antígeno HBsAg para 25 μg, em comparação à vacina de referência. MÉTODOS: Ensaio com alocação aleatória e mascaramento simples, comparando a VrHB-IB (Instituto Butantan) com a vacina de referência (Engerix B®, Glaxo Smith Kline). Os voluntários, entre 31 e 40 anos de idade (n=419), foram alocados aleatoriamente ao grupo experimental (n=216) ou ao grupo controle (n=203), e receberam três doses de vacina. A primeira dose foi administrada no momento do recrutamento, a segunda e terceira 30 e 180 dias depois respectivamente, entre 2004 e 2005. Amostras de sangue foram colhidas para análise sorológica antes da randomização, e após a segunda e terceira doses. Foi realizada a vigilância ativa de eventos adversos durante os cinco primeiros dias após a vacinação. As diferenças foram avaliadas pelos testes do qui-quadrado e exato de Fisher, com nível de significância de 5%. RESULTADOS: Não se observaram eventos adversos graves. A soroporteção foi confirmada em 98,6% (213/216) dos voluntários do grupo experimental, em comparação a 95,6% (194/203) do grupo controle. Os títulos geométricos médios foram de 12.557 e 11.673, respectivamente. CONCLUSÕES: A vacina brasileira foi considerada equivalente à vacina de referência e seu uso recomendado para adultos.
Resumo:
OBJETIVO: Analisar a efi cácia e segurança de vacina recombinante contra hepatite B em recém-nascidos. MÉTODOS: O estudo foi conduzido em hospital geral do município de Guarulhos, SP, entre 2002 e 2005. A vacina recombinante contra hepatite B do Instituto Butantan (VrHB-IB) foi analisada em dois ensaios clínicos. Em ambos os ensaios, os recém-nascidos foram alocados aleatoriamente ao grupo experimental ou controle (vacina de referência). Os recém-nascidos receberam três doses das vacinas, uma em até 24 h após o nascimento e as subseqüentes 30 e 180 dias após. No primeiro ensaio 538 recém-nascidos completaram o protocolo e no segundo ensaio, 486. Considerou-se critério de equivalência a diferença na soroproteção inferior a 5%. RESULTADOS: A soroproteção no primeiro ensaio (anti HBs ≥ 10mUI/ml) foi de 92,5% (247/267) no grupo experimental, comparada a 98,5% (267/271) no grupo controle (p = 0,001). Com este resultado, a VrHB-IB não atingiu o critério de equivalência estabelecido. Após o aumento da concentração de antígeno na vacina para 25μg, a soroproteção no segundo ensaio foi de 100% no grupo experimental e 99,2% no grupo controle. Nenhum evento adverso grave foi registrado. CONCLUSÕES: A vacina VrHB-IB modifi cada foi considerada equivalente à vacina de referência e seu uso recomendado à vacinação de recém-nascidos.
Resumo:
The dengue virus (DENV) non-structural 1 (NS1) protein plays a critical role in viral RNA replication and has a central position in DENV pathogenesis. DENV NS1 is a glycoprotein expressed in infected mammalian cells as soluble monomers that dimerize in the lumen of the endoplasmic reticulum; NS1 is subsequently transported to the cell surface, where it remains membrane associated or is secreted into the extracellular milieu as a hexameric complex. During the last three decades, the DENV NS1 protein has also been intensively investigated as a potential target for vaccines and antiviral drugs. In addition, NS1 is the major diagnostic marker for dengue infection. This review highlights some important issues regarding the role of NS1 in DENV pathogenesis and its biotechnological applications, both as a target for the development of safe and effective vaccines and antiviral drugs and as a tool for the generation of accurate diagnostic methods
Resumo:
The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
Bacterial capsular polysaccharides (PS) which naturally contain zwitterionic charge motifs (ZPS) possess specific immunostimulatory activity, leading to direct activation of antigen-presenting cells (APCs) through Toll-like receptor 2 (TLR2) and of T cells in co-culture systems. When administered intraperitoneally, ZPS and bacteria expressing them are involved in the induction or regulation of T-cell dependent inflammatory processes such as intra-abdominal abscess formation. Moreover it has been published that ZPSs are processed to low molecular weight carbohydrates and presented to T cells through a pathway similar to that used for protein antigens. These findings were in contrast with the paradigm according to which polysaccharides are T-independent antigens unable to be presented in association with MHC class II molecules and unable to induce a protective immune response. For this reason in glycoconjugate vaccines polysaccharides often need to be conjugated to a carrier protein to induce protection. The aim of our work was to generate vaccine candidates with antigen and adjuvant properties in one molecule by the chemical introduction of a positive charge into naturally anionic PS from group B streptococcus (GBS). The resulting zwitterionic PS (ZPS) has the ability to activate human and mouse APCs, and in mixed co-cultures of monocytes and T cells, ZPS induce MHC II-dependent T-cell proliferation and up-regulation of activation markers. TLR2 transfectants show reporter gene transcription upon incubation with ZPS and these stimulatory qualities can be blocked by anti-TLR2 mAbs or by the destruction of the zwitterionic motif. However, in vivo, ZPS used alone as vaccine antigen failed to induce protection against GBS challenge, a result which does not confirm the above mentioned postulate that ZPS are T-cell dependent Ags by virtue of their charge motif. Thus to make ZPS visible to the immune system we have conjugated ZPS with a carrier protein. ZPS-glycoconjugates induce higher T cell and Ab responses to carrier and PS, respectively, compared to control PS-glycoconjugates made with the native polysaccharide form. Moreover, protection of mothers or neonate offspring from lethal GBS challenge is better when mothers are immunized with ZPS-conjugates compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-conjugates lose both their increased immunogenicity and protective effect after vaccination. When ZPS are co-administered as adjuvants with unconjugated tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag to TLR2-expressing APCs and activate these APCs, leading to better T cell priming and ultimately to higher protective Ab titers. Thus, rational chemical design can generate potent novel PS-adjuvants with wide application, including glycoconjugates and co-administration with unrelated protein Ags.
Resumo:
Die Immuntherapie stellt eine hoffnungsvolle Alternative zu etablierten Behandlungsmethoden für Krebserkrankungen dar. Durch die Aktivierung des Immunsystems erhofft man sich eine selektive Abtötung von Tumorzellen. Eine solche Aktivierung kann durch Vakzinierung mit Glycopeptiden, welche Partialstrukturen tumorassoziierter Oberflächenglycoproteine darstellen, erfolgen. Um eine effektive Immunantwort zu erreichen, ist allerdings eine Konjugation dieser Glycopeptide mit immunogenen Trägern nötig. Zur Darstellung solcher Konjugate wurden im Rahmen dieser Arbeit zunächst mehrere, mit tumorassoziierten Kohlenhydraten glycosylierte Aminosäurebausteine dargestellt. Diese Bausteine wurden anschließend zur Festphasensynthese von Glycopeptiden eingesetzt. Durch ein neuartiges, chemoselektives Kupplungsverfahren konnten diese tumorassoziierten Glycopeptide an ein immunogenes Trägerprotein angebunden werden. Weiterhin wurde durch Festphasenpeptidsynthese ausgehend von einem tetrafunktionellen Lysin-Baustein ein dendrimeres Glycopeptid (MAP) erzeugt. Die Darstellung von vollsynthetischen Vakzinen gelang in Form von Konjugaten bestehend aus einem universellen T-Zell-Epitop und einem tumorassoziierten Glycopeptid. Diese Synthesen wurden ausgehend von einem festphasengebundenen, orthogonal geschützten Lysin durchgeführt. Abschließend wurde die Synthese von Konjugaten bestehend aus einem tumorassoziierten Glycopeptid und dem Mitogen Pam3Cys untersucht.
Resumo:
In the last decade, the reverse vaccinology approach shifted the paradigm of vaccine discovery from conventional culture-based methods to high-throughput genome-based approaches for the development of recombinant protein-based vaccines against pathogenic bacteria. Besides reaching its main goal of identifying new vaccine candidates, this new procedure produced also a huge amount of molecular knowledge related to them. In the present work, we explored this knowledge in a species-independent way and we performed a systematic in silico molecular analysis of more than 100 protective antigens, looking at their sequence similarity, domain composition and protein architecture in order to identify possible common molecular features. This meta-analysis revealed that, beside a low sequence similarity, most of the known bacterial protective antigens shared structural/functional Pfam domains as well as specific protein architectures. Based on this, we formulated the hypothesis that the occurrence of these molecular signatures can be predictive of possible protective properties of other proteins in different bacterial species. We tested this hypothesis in Streptococcus agalactiae and identified four new protective antigens. Moreover, in order to provide a second proof of the concept for our approach, we used Staphyloccus aureus as a second pathogen and identified five new protective antigens. This new knowledge-driven selection process, named MetaVaccinology, represents the first in silico vaccine discovery tool based on conserved and predictive molecular and structural features of bacterial protective antigens and not dependent upon the prediction of their sub-cellular localization.