971 resultados para Plane Problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields uj, j = 1, ..., n of sound sources supported in different bounded domains G1, ..., Gn in from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u1 + + un on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions , to construct uℓ for ℓ = 1, ..., n from u|Λ in the form We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictability is considered in the context of the seamless weather-climate prediction problem, and the notion is developed that there can be predictive power on all time-scales. On all scales there are phenomena that occur as well as longer time-scales and external conditions that should combine to give some predictability. To what extent this theoretical predictability may actually be realised and, further, to what extent it may be useful is not clear. However the potential should provide a stimulus to, and high profile for, our science and its application for many years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important feature of agribusiness promotion programs is their lagged impact on consumption. Efficient investment in advertising requires reliable estimates of these lagged responses and it is desirable from both applied and theoretical standpoints to have a flexible method for estimating them. This note derives an alternative Bayesian methodology for estimating lagged responses when investments occur intermittently within a time series. The method exploits a latent-variable extension of the natural-conjugate, normal-linear model, Gibbs sampling and data augmentation. It is applied to a monthly time series on Turkish pasta consumption (1993:5-1998:3) and three, nonconsecutive promotion campaigns (1996:3, 1997:3, 1997:10). The results suggest that responses were greatest to the second campaign, which allocated its entire budget to television media; that its impact peaked in the sixth month following expenditure; and that the rate of return (measured in metric tons additional consumption per thousand dollars expended) was around a factor of 20.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial � plane, including a leading order representation of the Coriolis force terms due to the poleward component of the planetary rotation vector. A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes earlier results for hydrostatic and incompressible systems and for systems that do not account for the nontraditional Coriolis force terms. The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its satisfying both the centrifugal and convective stability conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 01. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate Fréchet differentiability of the scattered field with respect to variation in the boundary in the case of time–harmonic acoustic scattering by an unbounded, sound–soft, one–dimensional rough surface. We rigorously prove the differentiability of the scattered field and derive a characterization of the Fréchet derivative as the solution to a Dirichlet boundary value problem. As an application of these results we give rigorous error estimates for first–order perturbation theory, justifying small perturbation methods that have a long history in the engineering literature. As an application of our rigorous estimates we show that a plane acoustic wave incident on a sound–soft rough surface can produce an unbounded scattered field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Dirichlet boundary-value problem for the Helmholtz equation in a non-locally perturbed half-plane. This problem models time-harmonic electromagnetic scattering by a one-dimensional, infinite, rough, perfectly conducting surface; the same problem arises in acoustic scattering by a sound-soft surface. ChandlerWilde & Zhang have suggested a radiation condition for this problem, a generalization of the Rayleigh expansion condition for diffraction gratings, and uniqueness of solution has been established. Recently, an integral equation formulation of the problem has also been proposed and, in the special case when the whole boundary is both Lyapunov and a small perturbation of a flat boundary, the unique solvability of this integral equation has been shown by Chandler-Wilde & Ross by operator perturbation arguments. In this paper we study the general case, with no limit on surface amplitudes or slopes, and show that the same integral equation has exactly one solution in the space of bounded and continuous functions for all wavenumbers. As an important corollary we prove that, for a variety of incident fields including the incident plane wave, the Dirichlet boundary-value problem for the scattered field has a unique solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a two-dimensional problem of scattering of a time-harmonic electromagnetic plane wave by an infinite inhomogeneous conducting or dielectric layer at the interface between semi-infinite homogeneous dielectric half-spaces. The magnetic permeability is assumed to be a fixed positive constant. The material properties of the media are characterized completely by an index of refraction, which is a bounded measurable function in the layer and takes positive constant values above and below the layer, corresponding to the homogeneous dielectric media. In this paper, we examine only the transverse magnetic (TM) polarization case. A radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as an equivalent mixed system of boundary and domain integral equations, consisting of second-kind integral equations over the layer and interfaces within the layer. Assumptions on the variation of the index of refraction in the layer are then imposed which prove to be sufficient, together with the radiation condition, to prove uniqueness of solution and nonexistence of guided wave modes. Recent, general results on the solvability of systems of second kind integral equations on unbounded domains establish existence of solution and continuous dependence in a weighted norm of the solution on the given data. The results obtained apply to the case of scattering by a rough interface between two dielectric media and to many other practical configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane with an unbounded, piecewise Lyapunov boundary. This problem models time-harmonic electromagnetic scattering in transverse magnetic polarization by one-dimensional rough, perfectly conducting surfaces. A radiation condition is introduced for the problem, which is a generalization of the usual one used in the study of diffraction by gratings when the solution is quasi-periodic, and allows a variety of incident fields including an incident plane wave to be included in the results obtained. We show in this paper that the boundary value problem for the scattered field has at most one solution. For the case when the whole boundary is Lyapunov and is a small perturbation of a flat boundary we also prove existence of solution and show a limiting absorption principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method is presented for obtaining rigorous upper bounds on the finite-amplitude growth of instabilities to parallel shear flows on the beta-plane. The method relies on the existence of finite-amplitude Liapunov (normed) stability theorems, due to Arnol'd, which are nonlinear generalizations of the classical stability theorems of Rayleigh and Fjørtoft. Briefly, the idea is to use the finite-amplitude stability theorems to constrain the evolution of unstable flows in terms of their proximity to a stable flow. Two classes of general bounds are derived, and various examples are considered. It is also shown that, for a certain kind of forced-dissipative problem with dissipation proportional to vorticity, the finite-amplitude stability theorems (which were originally derived for inviscid, unforced flow) remain valid (though they are no longer strictly Liapunov); the saturation bounds therefore continue to hold under these conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of symmetric stability is examined within the context of the direct Liapunov method. The sufficient conditions for stability derived by Fjørtoft are shown to imply finite-amplitude, normed stability. This finite-amplitude stability theorem is then used to obtain rigorous upper bounds on the saturation amplitude of disturbances to symmetrically unstable flows.By employing a virial functional, the necessary conditions for instability implied by the stability theorem are shown to be in fact sufficient for instability. The results of Ooyama are improved upon insofar as a tight two-sided (upper and lower) estimate is obtained of the growth rate of (modal or nonmodal) symmetric instabilities.The case of moist adiabatic systems is also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of linear sheared-disturbance evolution in constant-shear parallel flow is here reexamined with regard to the temporary-amplification phenomenon noted first by Orr in 1907. The results apply directly to Rossby waves on a beta-plane, and are also relevant to the Eady model of baroclinic instability. It is shown that an isotropic initial distribution of standing waves maintains a constant energy level throughout the shearing process, the amplification of some waves being precisely balanced by the decay of the others. An expression is obtained for the energy of a distribution of disturbances whose wavevectors lie within a given angular wedge and an upper bound derived. It is concluded that the case for ubiquitous amplification made in recent studies may have been somewhat overstated: while carefully-chosen individual Fourier components can amplify considerably before they decay. a general distribution will tend to exhibit little or no amplification.