961 resultados para Piano with orchestra
Resumo:
This paper considers the implications of the permanent/transitory decomposition of shocks for identification of structural models in the general case where the model might contain more than one permanent structural shock. It provides a simple and intuitive generalization of the influential work of Blanchard and Quah [1989. The dynamic effects of aggregate demand and supply disturbances. The American Economic Review 79, 655–673], and shows that structural equations with known permanent shocks cannot contain error correction terms, thereby freeing up the latter to be used as instruments in estimating their parameters. The approach is illustrated by a re-examination of the identification schemes used by Wickens and Motto [2001. Estimating shocks and impulse response functions. Journal of Applied Econometrics 16, 371–387], Shapiro and Watson [1988. Sources of business cycle fluctuations. NBER Macroeconomics Annual 3, 111–148], King et al. [1991. Stochastic trends and economic fluctuations. American Economic Review 81, 819–840], Gali [1992. How well does the ISLM model fit postwar US data? Quarterly Journal of Economics 107, 709–735; 1999. Technology, employment, and the business cycle: Do technology shocks explain aggregate fluctuations? American Economic Review 89, 249–271] and Fisher [2006. The dynamic effects of neutral and investment-specific technology shocks. Journal of Political Economy 114, 413–451].
Resumo:
Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.
Resumo:
Organometallic porphyrins with a metal, metalloid or phosphorus fragment directly attached to their carbon framework emerged for the first time in 1976, and these macrocycles have been intensively investigated in the past decade. The present review summarises for the first time all reported examples as well as applications of these systems.
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.