942 resultados para Phosphorylated
Resumo:
Lipid A from several strains of the N2-fixing bacterium Rhizobium leguminosarum displays significant structural differences from Escherichia coli lipid A, one of which is the complete absence of phosphate groups. However, the first seven enzymes of E. coli lipid A biosynthesis, leading from UDP-GlcNAc to the phosphorylated intermediate, 2-keto-3-deoxyoctulosonate (Kdo2)-lipid IVA, are present in R. leguminosarum. We now describe a membrane-bound phosphatase in R. leguminosarum extracts that removes the 4' phosphate of Kdo2-lipid IVA. The 4' phosphatase is selective for substrates containing the Kdo domain. It is present in extracts of R. leguminosarum biovars phaseoli, viciae, and trifolii but is not detectable in E. coli and Rhizobium meliloti. A nodulation-defective strain (24AR) of R. leguminosarum biovar trifolii, known to contain a 4' phosphatase residue on its lipid A, also lacks measurable 4' phosphatase activity. The Kdo-dependent 4' phosphatase appears to be a key reaction in a pathway for generating phosphate-deficient lipid A.
Resumo:
We have previously identified tyrosine-537 as a constitutively phosphorylated site on the human estrogen receptor (hER). A 12-amino acid phosphotyrosyl peptide containing a selected sequence surrounding tyrosine-537 was used to investigate the function of phosphotyrosine-537. The phosphotyrosyl peptide completely blocked the binding of the hER to an estrogen response element (ERE) in a gel mobility shift assay. Neither the nonphosphorylated tyrosyl peptide nor an unrelated phosphotyrosyl peptide previously shown to inhibit the signal transducers and activators of transcription factor (STAT) blocked binding of the hER to the ERE. The hER phosphotyrosyl peptide was shown by molecular sizing chromatography to dissociate the hER dimer into monomers. The hER specifically bound the 32P-labeled phosphotyrosyl peptide, indicating that the inhibition of ERE binding was caused by the phosphotyrosyl peptide binding directly to the hER and blocking dimerization. These data suggest that the phosphorylation of tyrosine-537 is a necessary step for the formation of the hER dimer. In addition, we propose that the dimerization of the hER occurs by a previously unrecognized Src homology 2 domain (SH2)-like phosphotyrosyl coupling mechanism. Consequently, the phosphotyrosyl peptide represents a class of antagonists that inhibits estrogen action by a mechanism other than interacting with the receptor's hormone binding site.
Resumo:
Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 +/- 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 +/- 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine resides, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 +/- 2% to 21 +/- 9%, and ezrin associated with the cytoskeleton decreased from 91 +/- 2% to 58 +/- 2%. Calyculin A (1 microM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.
Resumo:
A constitutively active fragment of rat MEK kinase 1 (MEKK1) consisting of only its catalytic domain (MEKK-C) expressed in bacteria quantitatively activates recombinant mitogen-activated protein (MAP) kinase/extracellular signal-regulated protein kinase (ERK) kinases 1 and 2 (MEK1 and MEK2) in vitro. Activation of MEK1 by MEKK-C is accompanied by phosphorylation of S218 and S222, which are also phosphorylated by the protein kinases c-Mos and Raf-1. MEKK1 has been implicated in regulation of a parallel but distinct cascade that leads to phosphorylation of N-terminal sites on c-Jun; thus, its role in the MAP kinase pathway has been questioned. However, in addition to its capacity to phosphorylate MEK1 in vitro, MEKK-C interacts with MEK1 in the two-hybrid system, and expression of mouse MEKK1 or MEKK-C in mammalian cells causes constitutive activation of both MEK1 and MEK2. Neither cotransfected nor endogenous ERK2 is highly activated by MEKK1 compared to its stimulation by epidermal growth factor in spite of significant activation of endogenous MEK. Thus, other as yet undefined mechanisms may be involved in determining information flow through the MAP kinase and related pathways.
Resumo:
The c-myb protooncogene encodes a highly conserved transcription factor that functions as both an activator and a repressor of transcription. The v-myb oncogenes of E26 leukemia virus and avian myeloblastosis virus encode proteins that are truncated at both the amino and the carboxyl terminus, deleting portions of the c-Myb DNA-binding and negative regulatory domains. This has led to speculation that the deleted regions contain important regulatory sequences. We previously reported that the 42-kDa mitogen-activated protein kinase (p42mapk) phosphorylates chicken and murine c-Myb at multiple sites in the negative regulatory domain in vitro, suggesting that phosphorylation might provide a mechanism to regulate c-Myb function. We now report that three tryptic phosphopeptides derived from in vitro phosphorylated c-Myb comigrate with three tryptic phosphopeptides derived from metabolically labeled c-Myb immunoprecipitated from murine erythroleukemia cells. At least two of these peptides are phosphorylated on serine-528. Replacement of serine-528 with alanine results in a 2- to 7-fold increase in the ability of c-Myb to transactivate a Myb-responsive promoter/reporter gene construct. These findings suggest that phosphorylation serves to regulate c-Myb activity and that loss of this phosphorylation site from the v-Myb proteins may contribute to their transforming potential.
Resumo:
Some growth factors transduce positive growth signals, while others can act as growth inhibitors. Nuclear signaling events of previously quiescent cells stimulated with various growth factors have been studied by isolating the complexed chromatin-associated proteins and chromatin-associated proteins. Signals from the plasma membrane are integrated within the cells and quickly transduced to the nucleus. It is clear that several growth factors, such as epidermal growth factor, transforming growth factor alpha (but not transforming growth factor beta), and platelet-derived growth factor, utilize similar intracellular signaling biochemistries to modulate nucleosomal characteristics. The very rapid and consistent phosphorylation of nuclear p33, p54, and low molecular mass proteins in the range of 15-18 kDa after growth factor stimulation implies that there is a coordination and integration of the cellular signaling processes. Additionally, phosphorylation of p33 and some low molecular mass histones has been found to occur within 5 min of growth factor treatment and to reach a maximum by 30 min. In this study, we report that Neu receptor activating factor also utilizes the same signaling mechanism and causes p33 to become phosphorylated. In addition, both the tumor promoter okadaic acid (which inhibits protein phosphatases 1 and 2A) and phorbol ester (phorbol 12-tetradecanoate 13-acetate) stimulate phosphorylation of p33, p54, and low molecular mass histones. However, transforming growth factor beta, which is a growth inhibitor for fibroblasts, fails to increase p33 phosphorylation. In general, p33 phosphorylation patterns correspond to positive and negative mitogenic signal transduction. p33 isolated from the complexed chromatin-associated protein fraction appears to be a kinase, or tightly associated with a kinase, and shares antigenicity with the cell division cycle-dependent Cdk2 kinase as determined by antibody-dependent analysis. The rapid phosphorylation of nucleosomal proteins may influence sets of early genes needed for the induction and progression of the cell cycle.
Resumo:
During T-cell activation, Ser59 in the unique N-terminal region of p56lck is phosphorylated. Mutation of Ser59 to Glu59 mimics Ser59 phosphorylation, and upon CD4 crosslinking, this mutant p56lck induces tyrosine phosphorylation of intracellular proteins distinct from those induced by wild-type p56lck. Mutant and wild-type p56lck have similar affinities for CD4 and similar kinase activities. In glutathione S-transferase fusion proteins, the p56lck Src homology 2 (SH2) domain with the SH3 domain and the unique N-terminal region (including Ser59) has a different binding specificity for phosphotyrosyl proteins than the SH2 domain alone. Either deletion of the unique N-terminal region or mutation of Ser59 to Glu59 in the fusion protein reverts the phosphotyrosyl protein binding specificity back to that of the SH2 domain alone. These results suggest that phosphorylation of Ser59 regulates the function of p56lck by controlling binding specificity of its SH2 domain.
Resumo:
The polyomavirus virion has an outer capsid comprised of 72 pentamers of the VP1 protein associated with the minor virion proteins, VP2 and VP3, and the viral minichromosome. To investigate the interaction between VP1 and VP2/VP3, we mapped VP1 phosphorylation sites and assayed VP1 recognition by anti-peptide antibodies after coexpression of VP1 with VP2 or VP3 by using recombinant baculovirus vectors. VP1, expressed either alone or with VP3, was phosphorylated on serine residues, which are not modified during polyomavirus infection of mouse cells. When VP1 was coexpressed with VP2, the nonphysiologic serine phosphorylation of VP1 was decreased, and a tryptic peptide containing Thr-63, a site modified during virus infection of mouse cells, was phosphorylated. An anti-peptide antibody directed against the VP1 BC loop domain containing Thr-63 recognized VP1 expressed alone but not VP1 coexpressed with VP2 or VP3. The change in phosphorylation resulting from coexpression of two structural proteins identifies the potential of the baculovirus system for studying protein-protein interactions and defines a functional role for the VP1-VP2 interaction.
Resumo:
We have previously shown that protein phosphorylation plays an important role in the sorting and assembly of tight junctions. We have now examined in detail the role of protein kinases in intercellular junction biogenesis by using a combination of highly specific and broad-spectrum inhibitors that act by independent mechanisms. Our data indicate that protein kinase C (PKC) is required for the proper assembly of tight junctions. Low concentrations of the specific inhibitor of PKC, calphostin C, markedly inhibited development of transepithelial electrical resistance, a functional measure of tight-junction biogenesis. The effect of PKC inhibitors on the development of tight junctions, as measured by resistance, was paralleled by a delay in the sorting of the tight-junction protein, zona occludens 1 (ZO-1), to the tight junction. The assembly of desmosomes and the adherens junction were not detectably affected, as determined by immunocytochemical analysis. In addition, ZO-1 was phosphorylated subsequent to the initiation of cell-cell contact, and treatment with calphostin C prevented approximately 85% of the phosphorylation increase. Furthermore, in vitro measurements indicate that ZO-1 may be a direct target of PKC. Moreover, membrane-associated PKC activity more than doubled during junction assembly, and immunocytochemical analysis revealed a pool of PKC zeta that appeared to colocalize with ZO-1 at the tight junction. A preformed complex containing ZO-1, ZO-2, p130, as well as 330- and 65-kDa phosphoproteins was detected by coimmunoprecipitation in both the presence and absence of cell-cell contact. Identity of the 330- and 65-kDa phosphoproteins remains to be determined, but the 65-kDa protein may be occludin. The mass of this complex and the incorporation of ZO-1 into the Triton X-100-insoluble cytoskeleton were not PKC dependent.
Resumo:
Macrophage colony-stimulating factor (M-CSF) is required for the growth and differentiation of mononuclear phagocytes. In the present studies using human monocytes, we show that M-CSF induces interaction of the Grb2 adaptor protein with the focal adhesion kinase pp125FAK. The results demonstrate that tyrosine-phosphorylated pp125FAK directly interacts with the SH2 domain of Grb2. The findings indicate that a pYENV site at Tyr-925 in pp125FAK is responsible for this interaction. We also demonstrate that the Grb2-FAK complex associates with the GTPase dynamin. Dynamin interacts with the SH3 domains of Grb2 and exhibits M-CSF-dependent tyrosine phosphorylation in association with pp125FAK. These findings suggest that M-CSF-induced signaling involves independent Grb2-mediated pathways, one leading to Ras activation and another involving pp125FAK and a GTPase implicated in receptor internalization.
Resumo:
We describe the full-length (72 kDa) myotonin protein kinase (Mt-PK) and demonstrate its kinase activity. The 72-kDa protein corresponds to the translation product from the first in-frame AUG codon. This protein was found in the cytoplasmic fraction, whereas the previously reported 55-kDa protein was observed in nuclear extracts. Only the 72-kDa protein was phosphorylated by [32P]phosphate in normal human fibroblasts. To investigate the putative kinase activity of Mt-PK, a construct containing the full-length open reading frame of Mt-PK was expressed in bacterial cells. The recombinant Mt-PK autophosphorylates a Ser residue and phosphorylates the synthetic peptide Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg, which contains a Ser residue in the phosphorylation site. We examined phosphorylation of the voltage-dependent Ca(2+)-release channel, or dihydropyridine receptor (DHPR), by recombinant Mt-PK. We observed that the beta subunit of DHPR was phosphorylated in vitro by Mt-PK. A beta-subunit DHPR peptide containing some of the Ser residues predicted to be phosphorylated was synthesized and found to be a substrate for Mt-PK in vitro. We conclude that the 72-kDa Mt-PK has a protein kinase activity specific for Ser residues.
Resumo:
Genes containing the interferon-stimulated response element (ISRE) enhancer have been characterized as transcriptionally responsive primarily to type I interferons (IFN alpha/beta). Induction is due to activation of a multimeric transcription factor, interferon-stimulated gene factor 3 (ISGF3), which is activated by IFN alpha/beta but not by IFN gamma. We found that ISRE-containing genes were induced by IFN gamma as well as by IFN alpha in Vero cells. The IFN gamma response was dependent on the ISRE and was accentuated by preexposure of cells to IFN alpha, a treatment that increases the abundance of ISGF3 components. Overexpression of ISGF3 polypeptides showed that the IFN gamma response depended on the DNA-binding protein ISGF3 gamma (p48) as well as on the 91-kDa protein STAT91 (Stat1 alpha). The transcriptional response to IFN alpha required the 113-kDa protein STAT113 (Stat2) in addition to STAT91 and p48. Mutant fibrosarcoma cells deficient in each component of ISGF3 were used to confirm that IFN gamma induction of an ISRE reporter required p48 and STAT91, but not STAT113. A complex containing p48 and phosphorylated STAT91 but lacking STAT113 bound the ISRE in vitro. IFN gamma-induced activation of this complex, preferentially formed at high concentrations of p48 and STAT91, may explain some of the overlapping responses to IFN alpha and IFN gamma.
Resumo:
It was previously proposed that the activation of rat liver phenylalanine hydroxylase (EC 1.14.16.1) by cAMP-dependent protein kinase-mediated phosphorylation of Ser-16 is due to the introduction of the negatively charged phosphate group. To explore the validity of this proposal, we have applied site-directed mutagenesis to specifically replace Ser-16 with negatively charged amino acids, glutamic and aspartic; with polar uncharged amino acids, asparagine and glutamine; with the positively charged amino acid lysine; and with the nonpolar hydrophobic amino acid alanine. The wild-type and mutant enzymes were purified to homogeneity, and the importance of Ser-16 in the activation of phenylalanine hydroxylase was examined by comparing the state of activation of the phosphorylated form of the wild-type hydroxylase with that of the mutants. The kinetic studies carried out on the wild-type phosphorylated hydroxylase showed that all the activation could be accounted for by an increase in Vmax with no change in Km for either phenylalanine or the pterin cofactor. Replacement of Ser-16 with a negatively charged residue, glutamate of aspartate, resulted in the activation of the hydroxylase by 2- to 4-fold, whereas replacement with glutamine, asparagine, lysine, or alanine resulted in a much more modest increase. Further, lysolecithin was found to stimulate the phosphorylated hydroxylase and the mutant enzymes S16E and S16D by a factor of 6-7. In contrast, the mutants S16Q, S16N, and S16A all showed the same magnitude of activation as the wild-type with lysolecithin. Therefore, this study demonstrates that activation of the enzyme by phosphorylation of Ser-16 by cAMP-dependent protein kinase is due to the introduction of negative charge(s) and strongly suggests the involvement of electrostatic interaction between the regulatory and catalytic domains of the hydroxylase.
Resumo:
The T-cell antigen receptor zeta chain plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. zeta chain can associate with certain protein tyrosine kinases and retains the capacity to transduce signals independently of the other receptor subunits. Thus, zeta chain could couple cell-surface-expressed T-cell antigen receptors to the intracellular signal-transduction apparatus by its association with various intracellular molecules in addition to tyrosine kinases. In the process of searching for zeta chain-associated molecules we observed that after lysis of resting T cells with Triton X-100, zeta chain is localized in the detergent-insoluble fraction, in addition to its presence in the detergent-soluble fraction. Treatment of T cells with cytochalasin B, an actin-depolymerizing agent, leads to the complete dissociation of zeta chain from the Triton-insoluble fraction, suggesting a linkage between zeta chain and the cytoskeletal matrix. We have also determined that cytoskeletal-associated zeta chain is expressed on the cell surface. Furthermore, a tyrosine-phosphorylated 16-kDa zeta chain was detected only in the Triton-insoluble cytoskeletal fraction of resting T cells. zeta chain also maintains its association with the cytoskeleton when expressed in COS cells, inferring that the cytoskeletal elements involved in this linkage may be ubiquitous. Finally, we have localized a 42-amino acid region in the intracytoplasmic domain of zeta chain, which is crucial for maximal interaction between zeta chain and the cytoskeleton. Anchorage of cell-surface-expressed zeta chain to the cytoskeleton in resting T cells may facilitate recycling of receptor complexes and/or allow the transduction of external stimuli into the cell.
Resumo:
Phosphorylation of the P proteins of nonsegmented negative-strand RNA viruses is critical for their function as transactivators of the viral RNA polymerases. Using unphosphorylated P protein of human parainfluenza virus type 3 (HPIV3) expressed in Escherichia coli, we have shown that the cellular protein kinase that phosphorylates P in vitro is biochemically and immunologically indistinguishable from cellular protein kinase C isoform zeta (PKC-zeta). Further, PKC-zeta is specifically packaged within the progeny HPIV3 virions and remains tightly associated with the ribonucleoprotein complex. The P protein seems also to be phosphorylated intracellularly by PKC-zeta, as shown by the similar protease digestion pattern of the in vitro and in vivo phosphorylated P proteins. The growth of HPIV3 in CV-1 cells is completely abrogated when a PKC-zeta-specific inhibitor pseudosubstrate peptide was delivered into cells. These data indicate that PKC-zeta plays an important role in HPIV3 gene expression by phosphorylating P protein, thus providing an opportunity to develop antiviral agents against an important human pathogen.